Iniciar sesión

The F distribution was named after Sir Ronald Fisher, an English statistician. The F statistic is a ratio (a fraction) with two sets of degrees of freedom; one for the numerator and one for the denominator. The F distribution is derived from the Student's t distribution. The values of the F distribution are squares of the corresponding values of the t distribution. One-Way ANOVA expands the t test for comparing more than two groups. The scope of that derivation is beyond the level of this course. It is preferable to use ANOVA when there are more than two groups instead of performing pairwise t tests because performing multiple tests introduces the likelihood of making a Type 1 error.

Two estimates of the variance are made to calculate the F ratio:

  1. The variance between samples: An estimate of σ2 that is the variance of the sample means multiplied by n (when the sample sizes are the same.). If the samples are different sizes, the variance between samples is weighted to account for the different sample sizes. The variance is also called variation due to treatment or explained variation.
  2. The variance within samples: It is an estimate of σ2, the average of the sample variances (also known as a pooled variance). When the sample sizes differ, the variance within the samples is weighted. The variance is also called the variation due to error or unexplained variation.
  • SSbetween = the sum of squares representing the variation among the different samples
  • SSwithin = the sum of squares representing the variation within samples due to chance.

This text is adapted from Openstax,Introductory Statistics, Section 13.2The F Distribution and the F-Ratio

Tags
F DistributionF StatisticDegrees Of FreedomStudent s T DistributionOne Way ANOVAType 1 ErrorVariance Between SamplesVariance Within SamplesPooled VarianceSum Of SquaresExplained VariationUnexplained Variation

Del capítulo 8:

article

Now Playing

8.15 : F Distribution

Distributions

3.6K Vistas

article

8.1 : Distribuciones para estimar el parámetro de población

Distributions

3.9K Vistas

article

8.2 : Grados de libertad

Distributions

2.9K Vistas

article

8.3 : Distribución de Estudiantes t

Distributions

5.7K Vistas

article

8.4 : Elegir entre la distribución z y t

Distributions

2.7K Vistas

article

8.5 : Distribución de Chi-cuadrado

Distributions

3.4K Vistas

article

8.6 : Encontrar valores críticos para Chi-cuadrado

Distributions

2.8K Vistas

article

8.7 : Estimación de la desviación estándar de la población

Distributions

2.9K Vistas

article

8.8 : Prueba de bondad de ajuste

Distributions

3.2K Vistas

article

8.9 : Frecuencias esperadas en las pruebas de bondad de ajuste

Distributions

2.5K Vistas

article

8.10 : Tabla de contingencia

Distributions

2.4K Vistas

article

8.11 : Introducción a la Prueba de Independencia

Distributions

2.0K Vistas

article

8.12 : Prueba de hipótesis para la prueba de independencia

Distributions

3.4K Vistas

article

8.13 : Determinación de la frecuencia esperada

Distributions

2.1K Vistas

article

8.14 : Prueba de homogeneidad

Distributions

1.9K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados