Accedi

The F distribution was named after Sir Ronald Fisher, an English statistician. The F statistic is a ratio (a fraction) with two sets of degrees of freedom; one for the numerator and one for the denominator. The F distribution is derived from the Student's t distribution. The values of the F distribution are squares of the corresponding values of the t distribution. One-Way ANOVA expands the t test for comparing more than two groups. The scope of that derivation is beyond the level of this course. It is preferable to use ANOVA when there are more than two groups instead of performing pairwise t tests because performing multiple tests introduces the likelihood of making a Type 1 error.

Two estimates of the variance are made to calculate the F ratio:

  1. The variance between samples: An estimate of σ2 that is the variance of the sample means multiplied by n (when the sample sizes are the same.). If the samples are different sizes, the variance between samples is weighted to account for the different sample sizes. The variance is also called variation due to treatment or explained variation.
  2. The variance within samples: It is an estimate of σ2, the average of the sample variances (also known as a pooled variance). When the sample sizes differ, the variance within the samples is weighted. The variance is also called the variation due to error or unexplained variation.
  • SSbetween = the sum of squares representing the variation among the different samples
  • SSwithin = the sum of squares representing the variation within samples due to chance.

This text is adapted from Openstax,Introductory Statistics, Section 13.2The F Distribution and the F-Ratio

Tags
F DistributionF StatisticDegrees Of FreedomStudent s T DistributionOne Way ANOVAType 1 ErrorVariance Between SamplesVariance Within SamplesPooled VarianceSum Of SquaresExplained VariationUnexplained Variation

Dal capitolo 8:

article

Now Playing

8.15 : F Distribution

Distributions

3.6K Visualizzazioni

article

8.1 : Distribuzioni per stimare il parametro della popolazione

Distributions

3.9K Visualizzazioni

article

8.2 : Gradi di libertà

Distributions

2.9K Visualizzazioni

article

8.3 : Distribuzione t degli studenti

Distributions

5.7K Visualizzazioni

article

8.4 : Scegliere tra la distribuzione z e t

Distributions

2.7K Visualizzazioni

article

8.5 : Distribuzione del chi-quadrato

Distributions

3.4K Visualizzazioni

article

8.6 : Trovare i Valori Critici per il Chi-Quadrato

Distributions

2.8K Visualizzazioni

article

8.7 : Stima della deviazione standard della popolazione

Distributions

2.9K Visualizzazioni

article

8.8 : Test di bontà dell'adattamento

Distributions

3.2K Visualizzazioni

article

8.9 : Frequenze attese nei test di bontà dell'adattamento

Distributions

2.5K Visualizzazioni

article

8.10 : Tabella di contingenza

Distributions

2.4K Visualizzazioni

article

8.11 : Introduzione alla Prova di Indipendenza

Distributions

2.0K Visualizzazioni

article

8.12 : Test di ipotesi per il test di indipendenza

Distributions

3.4K Visualizzazioni

article

8.13 : Determinazione della frequenza prevista

Distributions

2.1K Visualizzazioni

article

8.14 : Test di omogeneità

Distributions

1.9K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati