Iniciar sesión

The process of hypothesis testing based on the traditional method includes calculating the critical value, testing the value of the test statistic using the sample data, and interpreting these values.

First, a specific claim about the population parameter is decided based on the research question and is stated in a simple form. Further, an opposing statement to this claim is also stated. These statements can act as null and alternative hypotheses, out of which a null hypothesis would be a neutral statement while the alternative hypothesis can have a direction. The alternative hypothesis can also be the original claim if it involves a specific direction of the parameter.

Once the hypotheses are stated, they are expressed symbolically. As a convention, the null hypothesis would contain the equality symbol, while the alternative hypothesis may contain >, <, or ≠ symbols.

Before proceeding with hypothesis testing, an appropriate significance level must be decided. There is a general convention of choosing a 95% (i.e., 0.95) or 99% (i.e., 0.99) level. Here the αwould be 0.05 or 0.01, respectively.

Next, identify an appropriate test statistic. The proportion and mean (when population standard deviation is known) z statistic is preferred. For the mean, when population standard deviation is unknown, it is a t statistic, and for variance (or SD), it is a chi-square statistic.

Then, Calculate the critical value at the given significance level for the test statistic and plot the sampling distribution to observe the critical region. The critical value can be obtained from the z, t, and chi-square tables or electronically using statistical software.

Check if the test statistic falls within the critical region. If it falls within the critical region, reject the null hypothesis.

The decision about the claim about the property of the population or the general interpretation in this method does not require the P-value.

Tags
Hypothesis TestingTraditional MethodNull HypothesisAlternative HypothesisSignificance LevelTest StatisticZ StatisticT StatisticChi square StatisticCritical ValueCritical RegionSampling DistributionP value

Del capítulo 9:

article

Now Playing

9.7 : Decision Making: Traditional Method

Hypothesis Testing

3.8K Vistas

article

9.1 : ¿Qué es una hipótesis?

Hypothesis Testing

9.1K Vistas

article

9.2 : Hipótesis nulas y alternativas

Hypothesis Testing

7.5K Vistas

article

9.3 : Región Crítica, Valores Críticos y Nivel de Significación

Hypothesis Testing

11.4K Vistas

article

9.4 : Valor P

Hypothesis Testing

6.4K Vistas

article

9.5 : Tipos de pruebas de hipótesis

Hypothesis Testing

24.9K Vistas

article

9.6 : Toma de decisiones: Método del valor P

Hypothesis Testing

5.0K Vistas

article

9.8 : Hipótesis: ¿Aceptar o no rechazar?

Hypothesis Testing

26.9K Vistas

article

9.9 : Errores en las pruebas de hipótesis

Hypothesis Testing

3.9K Vistas

article

9.10 : Probando una afirmación sobre la proporción de la población

Hypothesis Testing

3.2K Vistas

article

9.11 : Prueba de una afirmación sobre la media: SD de población conocida

Hypothesis Testing

2.6K Vistas

article

9.12 : Probando una afirmación sobre la media: Población desconocida SD

Hypothesis Testing

3.3K Vistas

article

9.13 : Probando una afirmación sobre la desviación estándar

Hypothesis Testing

2.4K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados