S'identifier

The process of hypothesis testing based on the traditional method includes calculating the critical value, testing the value of the test statistic using the sample data, and interpreting these values.

First, a specific claim about the population parameter is decided based on the research question and is stated in a simple form. Further, an opposing statement to this claim is also stated. These statements can act as null and alternative hypotheses, out of which a null hypothesis would be a neutral statement while the alternative hypothesis can have a direction. The alternative hypothesis can also be the original claim if it involves a specific direction of the parameter.

Once the hypotheses are stated, they are expressed symbolically. As a convention, the null hypothesis would contain the equality symbol, while the alternative hypothesis may contain >, <, or ≠ symbols.

Before proceeding with hypothesis testing, an appropriate significance level must be decided. There is a general convention of choosing a 95% (i.e., 0.95) or 99% (i.e., 0.99) level. Here the αwould be 0.05 or 0.01, respectively.

Next, identify an appropriate test statistic. The proportion and mean (when population standard deviation is known) z statistic is preferred. For the mean, when population standard deviation is unknown, it is a t statistic, and for variance (or SD), it is a chi-square statistic.

Then, Calculate the critical value at the given significance level for the test statistic and plot the sampling distribution to observe the critical region. The critical value can be obtained from the z, t, and chi-square tables or electronically using statistical software.

Check if the test statistic falls within the critical region. If it falls within the critical region, reject the null hypothesis.

The decision about the claim about the property of the population or the general interpretation in this method does not require the P-value.

Tags
Hypothesis TestingTraditional MethodNull HypothesisAlternative HypothesisSignificance LevelTest StatisticZ StatisticT StatisticChi square StatisticCritical ValueCritical RegionSampling DistributionP value

Du chapitre 9:

article

Now Playing

9.7 : Decision Making: Traditional Method

Hypothesis Testing

3.8K Vues

article

9.1 : Qu’est-ce qu’une hypothèse ?

Hypothesis Testing

9.1K Vues

article

9.2 : Hypothèses nulles et alternatives

Hypothesis Testing

7.5K Vues

article

9.3 : Région critique, valeurs critiques et niveau de signification

Hypothesis Testing

11.4K Vues

article

9.4 : Valeur P

Hypothesis Testing

6.4K Vues

article

9.5 : Types de tests d’hypothèses

Hypothesis Testing

24.9K Vues

article

9.6 : Prise de décision : méthode de la valeur P

Hypothesis Testing

5.0K Vues

article

9.8 : Hypothèse : accepter ou ne pas rejeter ?

Hypothesis Testing

26.9K Vues

article

9.9 : Erreurs dans les tests d’hypothèses

Hypothesis Testing

3.9K Vues

article

9.10 : Tester une affirmation sur la proportion de la population

Hypothesis Testing

3.2K Vues

article

9.11 : Test d’une allégation sur la moyenne : Population connue SD

Hypothesis Testing

2.6K Vues

article

9.12 : Test d’une affirmation sur la moyenne : Population inconnue ET

Hypothesis Testing

3.3K Vues

article

9.13 : Test d’une affirmation sur l’écart-type

Hypothesis Testing

2.4K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.