In physics and engineering, understanding the moments of inertia for a given area with asymmetrical mass distribution is critical for proper design and analysis. When considering an arbitrary coordinate system, the moments of inertia can be obtained by integrating the moment of inertia for an infinitesimal area element.

Figure 1

Suppose another coordinate system inclined at an angle is considered. In that case, the transformation relations can be used to express the moments and product of inertia along the inclined axes in terms of the inclined coordinates and area element.

Equation 1

Equation 2

By reducing the moments of inertia to a function of the initial coordinates and using trigonometric identities, the moment of inertia along the inclined axes can be obtained.

Equation 3

Equation 4

Similarly, the transformation relations are applied in the expression for the product of inertia to calculate the product of inertia along the inclined axes.

Equation 5

When the moment of inertia along the original axes is added, the polar moment of inertia along the z-axis is obtained that is independent of the orientation of the inclined axes.

Equation 6

The moments of inertia and product of inertia along the inclined axes are essential in designing various structures, such as aircraft wings, to determine their stiffness. By understanding the moments of inertia and the product of inertia along different axes, engineers and designers can determine how various forces and loads will affect the structure, providing vital information for safe and effective design.

Tags
Moments Of InertiaAreaInclined AxesAsymmetrical Mass DistributionCoordinate SystemTransformation RelationsProduct Of InertiaTrigonometric IdentitiesPolar Moment Of InertiaStructural DesignAircraft WingsStiffness AnalysisEngineering Design

Del capítulo 10:

article

Now Playing

10.8 : Moments of Inertia for an Area about Inclined Axes

Moment of Inertia

526 Vistas

article

10.1 : Momentos de inercia por áreas

Moment of Inertia

747 Vistas

article

10.2 : Teorema de ejes paralelos para un área

Moment of Inertia

1.1K Vistas

article

10.3 : Radio de giro de un área

Moment of Inertia

1.0K Vistas

article

10.4 : Principales momentos de la zona

Moment of Inertia

846 Vistas

article

10.5 : Momentos de inercia: resolución de problemas

Moment of Inertia

489 Vistas

article

10.6 : Momentos de inercia para áreas compuestas

Moment of Inertia

892 Vistas

article

10.7 : Producto de la inercia de un área

Moment of Inertia

380 Vistas

article

10.9 : El círculo de Mohr para momentos de inercia

Moment of Inertia

386 Vistas

article

10.10 : El círculo de Mohr para los momentos de inercia: resolución de problemas

Moment of Inertia

1.6K Vistas

article

10.11 : Momento de inercia de la masa

Moment of Inertia

572 Vistas

article

10.12 : Momento de Inercia de la Masa: Resolución de Problemas

Moment of Inertia

235 Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados