JoVE Logo

Oturum Aç

In physics and engineering, understanding the moments of inertia for a given area with asymmetrical mass distribution is critical for proper design and analysis. When considering an arbitrary coordinate system, the moments of inertia can be obtained by integrating the moment of inertia for an infinitesimal area element.

Figure 1

Suppose another coordinate system inclined at an angle is considered. In that case, the transformation relations can be used to express the moments and product of inertia along the inclined axes in terms of the inclined coordinates and area element.

Equation 1

Equation 2

By reducing the moments of inertia to a function of the initial coordinates and using trigonometric identities, the moment of inertia along the inclined axes can be obtained.

Equation 3

Equation 4

Similarly, the transformation relations are applied in the expression for the product of inertia to calculate the product of inertia along the inclined axes.

Equation 5

When the moment of inertia along the original axes is added, the polar moment of inertia along the z-axis is obtained that is independent of the orientation of the inclined axes.

Equation 6

The moments of inertia and product of inertia along the inclined axes are essential in designing various structures, such as aircraft wings, to determine their stiffness. By understanding the moments of inertia and the product of inertia along different axes, engineers and designers can determine how various forces and loads will affect the structure, providing vital information for safe and effective design.

Etiketler

Moments Of InertiaAreaInclined AxesAsymmetrical Mass DistributionCoordinate SystemTransformation RelationsProduct Of InertiaTrigonometric IdentitiesPolar Moment Of InertiaStructural DesignAircraft WingsStiffness AnalysisEngineering Design

Bölümden 10:

article

Now Playing

10.8 : Moments of Inertia for an Area about Inclined Axes

Moment of Inertia

599 Görüntüleme Sayısı

article

10.1 : Moments of Inertia for Areas

Moment of Inertia

939 Görüntüleme Sayısı

article

10.2 : Parallel-Axis Theorem for an Area

Moment of Inertia

1.2K Görüntüleme Sayısı

article

10.3 : Radius of Gyration of an Area

Moment of Inertia

1.3K Görüntüleme Sayısı

article

10.4 : Principal Moments of Area

Moment of Inertia

942 Görüntüleme Sayısı

article

10.5 : Moments of Inertia: Problem Solving

Moment of Inertia

539 Görüntüleme Sayısı

article

10.6 : Moments of Inertia for Composite Areas

Moment of Inertia

950 Görüntüleme Sayısı

article

10.7 : Product of Inertia for an Area

Moment of Inertia

447 Görüntüleme Sayısı

article

10.9 : Mohr's Circle for Moments of Inertia

Moment of Inertia

461 Görüntüleme Sayısı

article

10.10 : Mohr's Circle for Moments of Inertia: Problem Solving

Moment of Inertia

1.8K Görüntüleme Sayısı

article

10.11 : Mass Moment of Inertia

Moment of Inertia

655 Görüntüleme Sayısı

article

10.12 : Mass Moment of Inertia: Problem Solving

Moment of Inertia

260 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır