Iniciar sesión

The site of chemical communication between a motor neuron and a muscle fiber is called the neuromuscular junction (NMJ). The end of the motor neuron at the NMJ divides into a cluster of synaptic end bulbs. The cytoplasm of these bulbs consists of synaptic vesicles enclosing acetylcholine molecules, the principal neurotransmitter released at the NMJ. The region opposite the synaptic bulb that ends in the muscle fiber is called the motor end plate, which has acetylcholine receptors. Within the NMJ, action potential arises, and impulse transmission across the NMJ facilitates skeletal muscle contractions.

As the nerve impulse arrives at the synaptic bulb ends, it stimulates Ca2+ influx by opening the calcium channels, which stimulates exocytosis of the synaptic vesicles and release of acetylcholine in the synaptic cleft. Two acetylcholine molecules bind to the receptor at the motor end plate, opening Na+ channels. Na+ influx inside the muscle fiber changes the membrane potential, triggering a muscle action potential followed by muscle contraction. The effect of acetylcholine is brief as the enzyme acetylcholinesterase breaks down acetylcholine into choline and acetate.

Certain agents can block the events at the NMJ to prevent muscle contraction. Botulinum toxin prevents exocytosis of the synaptic vesicles, preventing acetylcholine release. Tubocurarine and other neuromuscular blockers can limit impulse transmission across the NMJ by binding to acetylcholine receptors. This is important for treating several pathological conditions and for use during patient surgeries to induce muscle relaxation and temporary paralysis.

Tags
Neuromuscular JunctionNMJMotor NeuronMuscle FiberAcetylcholineNeurotransmitterAction PotentialSynaptic End BulbsMotor End PlateCalcium ChannelsExocytosisSynaptic CleftMuscle ContractionAcetylcholinesteraseBotulinum ToxinNeuromuscular Blockers

Del capítulo 7:

article

Now Playing

7.1 : Neuromuscular Junction And Blockade

Skeletal Muscle Relaxants

2.6K Vistas

article

7.2 : Clasificación de los relajantes del músculo esquelético

Skeletal Muscle Relaxants

2.2K Vistas

article

7.3 : Bloqueadores neuromusculares no despolarizantes (competitivos): mecanismo de acción

Skeletal Muscle Relaxants

1.1K Vistas

article

7.4 : Bloqueadores neuromusculares no despolarizantes (competitivos): acciones farmacológicas

Skeletal Muscle Relaxants

337 Vistas

article

7.5 : Bloqueadores neuromusculares no despolarizantes (competitivos): farmacocinética

Skeletal Muscle Relaxants

400 Vistas

article

7.6 : Bloqueadores despolarizantes: mecanismo de acción

Skeletal Muscle Relaxants

988 Vistas

article

7.7 : Bloqueadores despolarizantes: farmacocinéticos

Skeletal Muscle Relaxants

274 Vistas

article

7.8 : Relajantes musculares de acción directa: Dantroleno y toxina botulínica

Skeletal Muscle Relaxants

587 Vistas

article

7.9 : Relajantes del músculo esquelético: efectos adversos

Skeletal Muscle Relaxants

298 Vistas

article

7.10 : Relajantes del músculo esquelético: usos terapéuticos

Skeletal Muscle Relaxants

428 Vistas

article

7.11 : Agentes espasmolíticos: clasificación química

Skeletal Muscle Relaxants

822 Vistas

article

7.12 : Relajantes musculares de acción periférica y central: una comparación

Skeletal Muscle Relaxants

2.9K Vistas

article

7.13 : Relajantes musculares de acción central: usos terapéuticos

Skeletal Muscle Relaxants

537 Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados