Anmelden

The site of chemical communication between a motor neuron and a muscle fiber is called the neuromuscular junction (NMJ). The end of the motor neuron at the NMJ divides into a cluster of synaptic end bulbs. The cytoplasm of these bulbs consists of synaptic vesicles enclosing acetylcholine molecules, the principal neurotransmitter released at the NMJ. The region opposite the synaptic bulb that ends in the muscle fiber is called the motor end plate, which has acetylcholine receptors. Within the NMJ, action potential arises, and impulse transmission across the NMJ facilitates skeletal muscle contractions.

As the nerve impulse arrives at the synaptic bulb ends, it stimulates Ca2+ influx by opening the calcium channels, which stimulates exocytosis of the synaptic vesicles and release of acetylcholine in the synaptic cleft. Two acetylcholine molecules bind to the receptor at the motor end plate, opening Na+ channels. Na+ influx inside the muscle fiber changes the membrane potential, triggering a muscle action potential followed by muscle contraction. The effect of acetylcholine is brief as the enzyme acetylcholinesterase breaks down acetylcholine into choline and acetate.

Certain agents can block the events at the NMJ to prevent muscle contraction. Botulinum toxin prevents exocytosis of the synaptic vesicles, preventing acetylcholine release. Tubocurarine and other neuromuscular blockers can limit impulse transmission across the NMJ by binding to acetylcholine receptors. This is important for treating several pathological conditions and for use during patient surgeries to induce muscle relaxation and temporary paralysis.

Tags
Neuromuscular JunctionNMJMotor NeuronMuscle FiberAcetylcholineNeurotransmitterAction PotentialSynaptic End BulbsMotor End PlateCalcium ChannelsExocytosisSynaptic CleftMuscle ContractionAcetylcholinesteraseBotulinum ToxinNeuromuscular Blockers

Aus Kapitel 7:

article

Now Playing

7.1 : Neuromuscular Junction And Blockade

Skeletal Muscle Relaxants

2.6K Ansichten

article

7.2 : Klassifizierung von Skelettmuskelrelaxantien

Skeletal Muscle Relaxants

2.2K Ansichten

article

7.3 : Nichtdepolarisierende (kompetitive) neuromuskuläre Blocker: Wirkmechanismus

Skeletal Muscle Relaxants

1.1K Ansichten

article

7.4 : Nichtdepolarisierende (kompetitive) neuromuskuläre Blocker: Pharmakologische Wirkungen

Skeletal Muscle Relaxants

337 Ansichten

article

7.5 : Nichtdepolarisierende (kompetitive) neuromuskuläre Blocker: Pharmakokinetik

Skeletal Muscle Relaxants

400 Ansichten

article

7.6 : Depolarisierende Blocker: Wirkmechanismus

Skeletal Muscle Relaxants

988 Ansichten

article

7.7 : Depolarisierende Blocker: Pharmakokinetik

Skeletal Muscle Relaxants

274 Ansichten

article

7.8 : Direkt wirkende Muskelrelaxanzien: Dantrolen und Botulinumtoxin

Skeletal Muscle Relaxants

587 Ansichten

article

7.9 : Skelettmuskelrelaxanzien: Nebenwirkungen

Skeletal Muscle Relaxants

298 Ansichten

article

7.10 : Skelettmuskelrelaxanzien: Therapeutische Anwendungen

Skeletal Muscle Relaxants

428 Ansichten

article

7.11 : Spasmolytische Mittel: Chemische Klassifizierung

Skeletal Muscle Relaxants

822 Ansichten

article

7.12 : Peripher und zentral wirkende Muskelrelaxanzien: Ein Vergleich

Skeletal Muscle Relaxants

2.9K Ansichten

article

7.13 : Zentral wirkende Muskelrelaxanzien: Therapeutische Anwendungen

Skeletal Muscle Relaxants

537 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten