JoVE Logo

Iniciar sesión

One interesting characteristic of the simple harmonic motion (SHM) of an object attached to a spring is that the angular frequency, and the period and frequency of the motion, depend only on the mass and the force constant of the spring, and not on other factors such as the amplitude of the motion or initial conditions. We can use the equations of motion and Newton's second law to find the angular frequency, frequency, and period.

Consider a block on a spring on a frictionless surface. There are three forces on the mass: the weight, the normal force, and the force due to the spring. The only two forces that act perpendicular to the surface are the weight and the normal force, which have equal magnitudes and opposite directions; as a result, their sum is zero. The only force that acts parallel to the surface is the force due to the spring, so the net force must be equal to the force of the spring.

According to Hooke's law, as long as the forces and deformations are small enough, the magnitude of the spring force is proportional to the first power of displacement. Because of this, the spring-mass system is called a linear simple harmonic oscillator.

Substituting the expressions for acceleration and displacement in Newton's second law, the equation for angular frequency can be obtained.

Equation1

The angular frequency depends only on the force constant and the mass, not the amplitude. It is also related with the period of oscillation using the given relation:

Equation2

The period also depends only on the mass and the force constant. The greater the mass, the longer the period. The stiffer the spring, the shorter the period. The frequency is

Equation3

Tags

Spring mass SystemSimple Harmonic MotionAngular FrequencyFrequencyPeriodHooke s LawLinear Simple Harmonic OscillatorNewton s Second LawNet ForceDisplacementForcesMassForce Constant

Del capítulo 15:

article

Now Playing

15.5 : Frequency of Spring-Mass System

Oscilaciones

5.2K Vistas

article

15.1 : Movimiento armónico simple

Oscilaciones

9.1K Vistas

article

15.2 : Características del movimiento armónico simple

Oscilaciones

11.9K Vistas

article

15.3 : Oscilaciones en torno a la posición de equilibrio

Oscilaciones

5.2K Vistas

article

15.4 : Energía en movimiento armónico simple

Oscilaciones

8.2K Vistas

article

15.6 : Movimiento armónico simple y movimiento circular uniforme

Oscilaciones

4.1K Vistas

article

15.7 : Resolución de problemas: energía en movimiento armónico simple

Oscilaciones

1.2K Vistas

article

15.8 : Péndulo simple

Oscilaciones

4.5K Vistas

article

15.9 : Péndulo torsional

Oscilaciones

5.2K Vistas

article

15.10 : Péndulo físico

Oscilaciones

1.6K Vistas

article

15.11 : Medición de la aceleración debida a la gravedad

Oscilaciones

492 Vistas

article

15.12 : Oscilaciones amortiguadas

Oscilaciones

5.6K Vistas

article

15.13 : Tipos de amortiguación

Oscilaciones

6.3K Vistas

article

15.14 : Oscilaciones forzadas

Oscilaciones

6.4K Vistas

article

15.15 : Concepto de Resonancia y sus Características

Oscilaciones

5.0K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados