JoVE Logo

Zaloguj się

One interesting characteristic of the simple harmonic motion (SHM) of an object attached to a spring is that the angular frequency, and the period and frequency of the motion, depend only on the mass and the force constant of the spring, and not on other factors such as the amplitude of the motion or initial conditions. We can use the equations of motion and Newton's second law to find the angular frequency, frequency, and period.

Consider a block on a spring on a frictionless surface. There are three forces on the mass: the weight, the normal force, and the force due to the spring. The only two forces that act perpendicular to the surface are the weight and the normal force, which have equal magnitudes and opposite directions; as a result, their sum is zero. The only force that acts parallel to the surface is the force due to the spring, so the net force must be equal to the force of the spring.

According to Hooke's law, as long as the forces and deformations are small enough, the magnitude of the spring force is proportional to the first power of displacement. Because of this, the spring-mass system is called a linear simple harmonic oscillator.

Substituting the expressions for acceleration and displacement in Newton's second law, the equation for angular frequency can be obtained.

Equation1

The angular frequency depends only on the force constant and the mass, not the amplitude. It is also related with the period of oscillation using the given relation:

Equation2

The period also depends only on the mass and the force constant. The greater the mass, the longer the period. The stiffer the spring, the shorter the period. The frequency is

Equation3

Tagi

Spring mass SystemSimple Harmonic MotionAngular FrequencyFrequencyPeriodHooke s LawLinear Simple Harmonic OscillatorNewton s Second LawNet ForceDisplacementForcesMassForce Constant

Z rozdziału 15:

article

Now Playing

15.5 : Frequency of Spring-Mass System

Oscillations

5.2K Wyświetleń

article

15.1 : Prosty ruch harmoniczny

Oscillations

9.1K Wyświetleń

article

15.2 : Charakterystyka prostego ruchu harmonicznego

Oscillations

11.7K Wyświetleń

article

15.3 : Oscylacje wokół pozycji równowagi

Oscillations

5.2K Wyświetleń

article

15.4 : Energia w prostym ruchu harmonicznym

Oscillations

8.0K Wyświetleń

article

15.6 : Prosty ruch harmoniczny i jednostajny ruch kołowy

Oscillations

4.1K Wyświetleń

article

15.7 : Rozwiązywanie problemów: energia w prostym ruchu harmonicznym

Oscillations

1.2K Wyświetleń

article

15.8 : Proste wahadło

Oscillations

4.5K Wyświetleń

article

15.9 : Wahadło skrętne

Oscillations

5.2K Wyświetleń

article

15.10 : Wahadło fizyczne

Oscillations

1.6K Wyświetleń

article

15.11 : Pomiar przyspieszenia ziemskiego

Oscillations

490 Wyświetleń

article

15.12 : Tłumione oscylacje

Oscillations

5.6K Wyświetleń

article

15.13 : Rodzaje tłumienia

Oscillations

6.3K Wyświetleń

article

15.14 : Oscylacje wymuszone

Oscillations

6.4K Wyświetleń

article

15.15 : Pojęcie rezonansu i jego charakterystyka

Oscillations

5.0K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone