Band broadening in a chromatography column is measured by its efficiency. This is determined by the number of theoretical plates (N). Theoretical plate theory states that a separation column consists of a continuous series of imaginary plates where solute equilibration occurs between stationary and mobile phases.

A higher number of theoretical plates signifies better column efficiency and improved separation capabilities. Plate height affects bandwidth and separation quality; it is inversely proportional to column efficiency. The number of theoretical plates (N) is calculated as the column length (L) divided by plate height (H), as shown in the equation:

Equation1

Minimizing H is crucial for achieving better efficiency and reducing column length.

Plate heights vary for different solutes due to differing diffusion coefficients. They range from 0.1 to 1 mm in gas chromatography, around 10 µm in high-performance liquid chromatography, and less than 1 µm in capillary electrophoresis.

Column efficiency can be defined as the variance per unit length, as chromatographic bands often have Gaussian shapes. The number of theoretical plates also relates to retention time and peak width at the base or half height. It is important to note that theoretical plates are an abstract concept, and their number depends on the column and solute properties, making them variable for different solutes.

In packed columns, the height equivalent to a theoretical plate (HETP) is a valuable parameter representing column performance. HETP indicates the column length needed for one theoretical plate and is essential for designing and evaluating packed column efficiency. A lower HETP value signifies a higher column efficiency and improved separation capabilities.

Del capítulo 11:

article

Now Playing

11.6 : Column Efficiency: Plate Theory

Principles of Chromatography

280 Vistas

article

11.1 : Métodos cromatográficos: Terminología

Principles of Chromatography

471 Vistas

article

11.2 : Métodos cromatográficos: Clasificación

Principles of Chromatography

562 Vistas

article

11.3 : Adsorción y distribución de analitos

Principles of Chromatography

368 Vistas

article

11.4 : Difusión en columnas de cromatografía

Principles of Chromatography

255 Vistas

article

11.5 : Resolución cromatográfica

Principles of Chromatography

200 Vistas

article

11.7 : Eficiencia de la columna: Teoría de la tasa

Principles of Chromatography

164 Vistas

article

11.8 : Optimización de las separaciones cromatográficas

Principles of Chromatography

238 Vistas

article

11.9 : Cromatografía en columna de gel de sílice: descripción general

Principles of Chromatography

672 Vistas

article

11.10 : Cromatografía en capa fina (TLC): descripción general

Principles of Chromatography

676 Vistas

article

11.11 : Cromatografía de gases: Introducción

Principles of Chromatography

340 Vistas

article

11.12 : Cromatografía de gases: tipos de columnas y fases estacionarias

Principles of Chromatography

237 Vistas

article

11.13 : Cromatografía de gases: sistemas de inyección de muestras

Principles of Chromatography

223 Vistas

article

11.14 : Cromatografía de gases: descripción general de los detectores

Principles of Chromatography

217 Vistas

article

11.15 : Cromatografía de Gases: Tipos de Detectores-I

Principles of Chromatography

221 Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados