Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Presentamos un protocolo de ecografía y fotoacústica coregistrada para la imagen transvaginal de lesiones ováricas/anexiales. El protocolo puede ser valioso para otros estudios de imágenes fotoacústicas traslacionales, especialmente aquellos que utilizan matrices de ultrasonido comerciales para la detección de señales fotoacústicas y algoritmos estándar de formación de haces de retardo y suma para imágenes.
El cáncer de ovario sigue siendo el más mortal de todos los tumores malignos ginecológicos debido a la falta de herramientas de detección confiables para la detección temprana y el diagnóstico. La fotoimagen o tomografía (PAT) es una modalidad de imagen emergente que puede proporcionar la concentración total de hemoglobina (escala relativa, rHbT) y la saturación de oxígeno en sangre (%sO2) de las lesiones ováricas/anexiales, que son parámetros importantes para el diagnóstico del cáncer. Combinado con ultrasonido coregistrado (US), PAT ha demostrado un gran potencial para detectar cánceres de ovario y para diagnosticar con precisión las lesiones ováricas para una evaluación efectiva del riesgo y la reducción de cirugías innecesarias de lesiones benignas. Sin embargo, los protocolos de imagen PAT en aplicaciones clínicas, hasta donde sabemos, varían en gran medida entre los diferentes estudios. Aquí, informamos un protocolo de imágenes de cáncer de ovario transvaginal que puede ser beneficioso para otros estudios clínicos, especialmente aquellos que utilizan matrices de ultrasonido comerciales para la detección de señales fotoacústicas y algoritmos estándar de formación de haces de retardo y suma para imágenes.
La imagen fotoacústica o tomografía (PAT) es una modalidad de imagen híbrida que mide la distribución de absorción óptica a resolución y profundidades de EE. UU. mucho más allá del límite de difusión óptica tisular (~ 1 mm). En PAT, se utiliza un pulso láser de nanosegundos para excitar el tejido biológico, causando un aumento transitorio de la temperatura debido a la absorción óptica. Esto conduce a un aumento de presión inicial, y las ondas fotoacústicas resultantes se miden mediante transductores estadounidenses. PAT multiespectral implica el uso de un láser sintonizable o múltiples láseres que operan en diferentes longitudes de onda para iluminar el tejido, lo que permite la reconstrucción de mapas de absorción óptica en múltiples longitudes de onda. Basado en la absorción diferencial de hemoglobina oxigenada y desoxigenada en la ventana del infrarrojo cercano (NIR), PAT multiespectral puede calcular las distribuciones de concentraciones de hemoglobina oxigenada y desoxigenada, la concentración total de hemoglobina y la saturación de oxígeno en sangre, que son todos biomarcadores funcionales relacionados con la angiogénesis tumoral y el consumo de oxigenación sanguínea o el metabolismo tumoral. PAT ha demostrado éxito en muchas aplicaciones oncológicas, como el cáncer de ovario1,2, el cáncer de mama 3,4,5, el cáncer de piel6, el cáncer de tiroides 7,8, el cáncer de cuello uterino9, el cáncer de próstata 10,11 y el cáncer colorrectal 12.
El cáncer de ovario es la más mortal de todas las neoplasias malignas ginecológicas. Solo el 38% de los cánceres de ovario se diagnostican en una etapa temprana (localizada o regional), donde la tasa de supervivencia a 5 años es de 74,2% a 93,1%. La mayoría se diagnostican en una etapa tardía, para la cual la tasa de supervivencia a 5 años es del 30,8% o menos13. Los métodos actuales de diagnóstico clínico, incluida la ecografía transvaginal (ETM), la ecografía Doppler US, el antígeno 125 del cáncer sérico (CA 125) y la proteína 4 del epidídimo humano (HE4), han demostrado carecer de sensibilidad y especificidad para el diagnóstico precoz del cáncer de ovario14,15,16. Además, una gran parte de las lesiones ováricas benignas pueden ser difíciles de diagnosticar con precisión con las tecnologías de imagen actuales, lo que conduce a cirugías innecesarias con mayores costos de atención médica y complicaciones quirúrgicas. Por lo tanto, se necesitan métodos no invasivos precisos adicionales para la estratificación del riesgo de masas anexiales para optimizar el manejo y los resultados. Claramente, se necesita una técnica que sea sensible y específica para el cáncer de ovario en etapa temprana y más precisa para identificar lesiones malignas a partir de lesiones benignas.
Nuestro grupo ha desarrollado un sistema transvaginal de US y PAT (USPAT) para el diagnóstico de cáncer de ovario mediante la combinación de un sistema clínico de EE. UU., una funda de sonda hecha a medida para albergar las fibras ópticas para la entrega de luz y un láser sintonizable1. La concentración total de hemoglobina (escala relativa, rHbT) y la saturación de oxígeno en sangre (%sO2) derivadas del sistema USPAT han demostrado un gran potencial para la detección de cánceres de ovario en estadio temprano y para el diagnóstico preciso de lesiones ováricas para la evaluación efectiva del riesgo y la reducción de cirugías innecesarias de lesiones benignas 1,2. El esquema del sistema actual se muestra en la Figura 1 y el diagrama de bloques de control se muestra en la Figura 2. Esta estrategia tiene el potencial de integrarse en los protocolos TUS existentes para el diagnóstico del cáncer de ovario al tiempo que proporciona parámetros funcionales (rHbT, %sO2) para mejorar la sensibilidad y la especificidad de la TUS.
Toda la investigación realizada fue aprobada por la Junta de Revisión Institucional de la Universidad de Washington.
1. Configuración del sistema: Iluminación óptica (Figura 1)
2. Configuración del sistema: Esquema de detección y escaneo ultrasónico
3. Calibración del sistema
4. Un procedimiento experimental de muestra: imágenes USPAT transvaginales del ovario humano
Aquí, mostramos ejemplos de lesiones ováricas malignas y normales fotografiadas por USPAT. La Figura 3 muestra a una mujer premenopáusica de 50 años con masas anexiales multiquísticas bilaterales reveladas por TC con contraste. La Figura 3A muestra la imagen estadounidense de los anexos izquierdos con el ROI que marca el nódulo sólido sospechoso dentro de la lesión quística. La Figura 3B muestra el mapa PAT rHbT superpuest...
Iluminación óptica
El número de fibras utilizadas se basa en dos factores: la uniformidad de la iluminación de la luz y la complejidad del sistema. Es fundamental tener un patrón de iluminación de luz uniforme en la superficie de la piel para evitar puntos calientes. También es importante mantener el sistema simple y robusto con un número mínimo de fibras. El uso de cuatro fibras separadas ha demostrado previamente ser óptimo para crear una iluminación uniforme a profundidades de varios mil...
Los autores no tienen intereses financieros relevantes en el manuscrito y no hay otros posibles conflictos de intereses que revelar.
Este trabajo fue apoyado por el NCI (R01CA151570, R01CA237664). Los autores agradecen a todo el grupo de oncología ginecológica dirigido por el Dr. Mathew Powell por ayudar a reclutar pacientes, a los radiólogos Drs. Cary Siegel, William Middleton y Malak Itnai por ayudar con los estudios estadounidenses, y al patólogo Dr. Ian Hagemann por ayudar con la interpretación patológica de los datos. Los autores agradecen los esfuerzos de Megan Luther y los coordinadores del estudio GYN para coordinar los programas de estudio, identificar pacientes para el estudio y obtener el consentimiento informado.
Name | Company | Catalog Number | Comments |
Clinical US imaging system | Alpinion Medical Systems | EC-12R | Fully programmable clinical US system |
Dielectric mirror | Thorlabs | BB1-E03 | Used to reflect light along the optical path |
Endocavity US transducer | Alpinion Medical Systems | EC3-10 | Transvaginal ultrasound probe |
Laser power meter | Coherent | LabMax TOP | Used to measure laser energy |
Multi-mode optical fiber | Thorlabs | FP1000ERT | Couple laser light to the endocavity ultrasound probe |
Non-polarizing beam splitter plate | Thorlabs | BSW11 | For splitting laser beam into sensors to measure energy |
Plano-concave lens | Thorlabs | LC1715 | For laser beam expansion |
Plano-convex lens | Thorlabs | LA1484-B | For laser beam collimation |
Plano-convex lens | Thorlabs | LA1433-B | Used to focus light into four optical fibers |
Polarizing beam splitter cube | Thorlabs | PBS252 | For splitting laser beam into four beams |
Protective probe shealth | Custom 3D printed | Hold and protect the four optical fibers at the tip of the ultrasound probe | |
Right angle prism mirror | Thorlabs | MRA25-E03 | Used to reflect light along the optical path |
Tunable laser system | Symphotic TII | LS-2145-LT50PC | Light source for multispectral PAT |
USPAT control software | Custom developed in C++ | Controls acquisition parameters of the ultrasound machine and the laser wavelength | |
USPAT image display software | Custom developed in C++ | Displays the US/PAT B-scans and sO2/rHbT maps in real time |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoExplorar más artículos
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados