Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We have developed techniques for mapping the visual cortex function utilizing more of the visual field than is commonly used. This approach has the potential to enhance the evaluation of vision disorders and eye diseases.

Abstract

High-resolution retinotopic blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) with a wide-view presentation can be used to functionally map the peripheral and central visual cortex. This method for measuring functional changes of the visual brain allows for functional mapping of the occipital lobe, stimulating >100° (±50°) or more of the visual field, compared to standard fMRI visual presentation setups which usually cover <30° of the visual field. A simple wide-view stimulation system for BOLD fMRI can be set up using common MR-compatible projectors by placing a large mirror or screen close to the subject's face and using only the posterior half of a standard head coil to provide a wide-viewing angle without obstructing their vision. The wide-view retinotopic fMRI map can then be imaged using various retinotopic stimulation paradigms, and the data can be analyzed to determine the functional activity of visual cortical regions corresponding to central and peripheral vision. This method provides a practical, easy-to-implement visual presentation system that can be used to evaluate changes in the peripheral and central visual cortex due to eye diseases such as glaucoma and the vision loss that may accompany them.

Introduction

Functional magnetic resonance imaging (fMRI) is a valuable method to assess changes in regional neurovascular function within the visual cortex in response to stimuli, as changes in regional blood flow correlate to the activation of brain regions1,2. High-resolution retinotopic blood oxygenation level-dependent (BOLD) signal measurements represent changes in deoxyhemoglobin, which are driven by localized changes in blood flow and blood oxygenation within the brain1,2. BOLD activity patterns collected from fMRI data can be used to ....

Protocol

Research with human participants was performed in compliance with institutional guidelines at the University of Texas Health Science Center and Stony Brook University, with informed consent obtained from participants for these studies and use of their data.

1. Setup of MRI scanner and imaging protocols

  1. For fMRI, use a 3T MRI scanner with multi-channel receiver head coils. Different field strengths can also be used but may present difficulties with signal-to-noise r.......

Representative Results

Nine participants diagnosed with POAG (four males, 36-74 years old) and nine age-matched healthy volunteers (six males, 53-65) were evaluated using the aforementioned wide-view fMRI protocol, as previously described by Zhou et al3. POAG was confirmed clinically in patients with an open angle by assessment of the presentation of visual field defects consistent with glaucoma, optic disc cupping, and/or an intraocular pressure (IOP) greater than 21 mmHg3. A wide-view visual pr.......

Discussion

The above protocol for utilization of wide-view retinotopic fMRI is an innovative method to evaluate the effects of vision loss and eye diseases on the brain. Through wide-field retinotopic mapping of the visual cortex with the use of a wider-view screen, this approach allows for a more comprehensive understanding of the visual system's functional organization. This could lead to a better understanding of abnormalities in the brain's visual processing system, which occurs in neurodegeneration, such as in glaucoma

Acknowledgements

This work was supported by the National Institutes of Health [R01EY030996].

....

Materials

NameCompanyCatalog NumberComments
1/4"-20 nylon machine screws, knurled head thumb screwto attach rod to PVC frame
1-1/4 inch PVC pipelength of ~5-10 ft is needed
3T MRI scannerSiemens
6-32 nylon machine screws, rounded headto attach mirror/screen to rod
8-channel head array coilSiemens
90 degree PVC elbow, 1-1/4 inch fitting
Acrylic mirrorWidth and length of 25-30cm
Acrylic rod1 inch width, ~ 2 ft long depening on size of scanner bore and head coil
E-PrimePsychology Software Toolsto prepare and present visual stimuli paradigms
Plywood sheet, 1/2 inch thickSize should be at least as large as the scanner bore. Cut as bore-sized frame for the projection screen
Rear projection screenSize should be at least as large as the scanner bore

References

  1. Kwong, K. K., et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences. 89 (12), 5675-5679 (1992).
  2. Ogawa, S., et al.

Explore More Articles

FMRIVisual CortexWide view Retinotopic StimulationVisual Presentation SystemBOLDPeripheral VisionCentral VisionOphthalmic DiseasesGlaucomaVisual ImpairmentFunctional MappingOccipital LobeCost effectiveAffordable

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados