Sign In
Unsymmetrical bending occurs when a structural member is subjected to bending moments in a plane that does not align with the member's principal axes. This scenario typically arises in beams and other structural components when loads are applied at non-ideal angles, introducing complexities in stress analysis.
When a bending moment is applied at an angle θ concerning the vertical axis of a symmetrical member, it can be resolved into components along the member's principal centroidal axes. The stress distribution resulting from each component can be separately calculated and then combined using the superposition principle, discussed in a previous lesson. The stresses are distributed linearly across the member, with the maximum and minimum stresses occurring at the furthest points from the neutral axis, where the stress equals zero.
The neutral axis is where the bending stress is zero. It follows a straight line whose orientation can be determined by the relationship between the angle of the applied load and the member's moments of inertia about its axes. The angle ϕ, which the neutral axis makes with the vertical axis, depends on these moments of inertia. If the moment of inertia along the vertical axis is greater than along the horizontal axis, ϕ will be greater than θ, indicating that the neutral axis rotates in proportion to the member's anisotropic inertial properties.
From Chapter 20:
Now Playing
Bending
240 Views
Bending
244 Views
Bending
164 Views
Bending
156 Views
Bending
225 Views
Bending
157 Views
Bending
164 Views
Bending
122 Views
Bending
198 Views
Bending
73 Views
Bending
91 Views
Bending
84 Views
Bending
134 Views
Bending
136 Views
Bending
265 Views
See More
Copyright © 2025 MyJoVE Corporation. All rights reserved
We use cookies to enhance your experience on our website.
By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.