Accurate modeling of nanohelical structures is important for predictive simulation studies leading to novel nanotechnology applications. Currently, software packages and codes are limited in creating atomistic helical models. We present two procedures designed to create atomistic nanohelical models for simulations, and a graphical interface to enhance research through visualization.
A new computational system featuring GPU-accelerated molecular dynamics simulation and 3D/VR visualization, analysis and manipulation of nanostructures has been implemented, representing a novel approach to advance materials research and promote innovative investigation and alternative methods to learn about material structures with dimensions invisible to the human eye.