Generation of Human Neurons and Oligodendrocytes from Pluripotent Stem Cells for Modeling Neuron-Oligodendrocyte InteractionsBenedetta Assetta *1, Changyong Tang *1,2, Jing Bian *3, Ryan O'Rourke 1, Kevin Connolly 1, Thomas Brickler 3, Sundari Chetty 3,4, Yu-Wen Alvin Huang 1,5,6
1Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 2Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 3Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 4Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 5Department of Neurology, Warren Alpert Medical School of Brown University, 6Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University
The neuron-glial interactions in neurodegeneration are not well understood due to inadequate tools and methods. Here, we describe optimized protocols to obtain induced neurons, oligodendrocyte precursor cells, and oligodendrocytes from human pluripotent stem cells and provide examples of the values of these methods in understanding cell-type-specific contributions in Alzheimer’s disease.