S'identifier

JESSE BROWN VA MEDICAL CENTER

3 ARTICLES PUBLISHED IN JoVE

image

Bioengineering

Epithelial Cell Repopulation and Preparation of Rodent Extracellular Matrix Scaffolds for Renal Tissue Development
Joseph S. Uzarski 1,2, Jimmy Su 1,2,3,4, Yan Xie 1,2, Zheng J. Zhang 1,2, Heather H. Ward 5, Angela Wandinger-Ness 6, William M. Miller 7,8, Jason A. Wertheim 1,2,3,4,8,9
1Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, 2Department of Surgery, Feinberg School of Medicine, Northwestern University, 3Department of Biomedical Engineering, Northwestern University, 4Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University, 5Department of Internal Medicine, University of New Mexico HSC, 6Department of Pathology, University of New Mexico HSC, 7Department of Chemical and Biological Engineering, Northwestern University, 8Chemistry of Life Processes Institute, Northwestern University, 9Department of Surgery, Jesse Brown VA Medical Center

This protocol describes decellularization of Sprague Dawley rat kidneys by antegrade perfusion of detergents through the vasculature, producing acellular renal extracellular matrices that serve as templates for repopulation with human renal epithelial cells. Recellularization and use of the resazurin perfusion assay to monitor growth is performed within specially-designed perfusion bioreactors.

image

Biology

Methods to Study Epithelial Transport Protein Function and Expression in Native Intestine and Caco-2 Cells Grown in 3D
Arivarasu N. Anabazhagan *1, Ishita Chatterjee *1, Shubha Priyamvada 1, Anoop Kumar 1, Sangeeta Tyagi 1, Seema Saksena 1,2, Waddah A. Alrefai 1,2, Pradeep K. Dudeja 1,2, Ravinder K. Gill 1
1Department of Medicine, University of Illinois at Chicago, 2Department of Research, Jesse Brown VA Medical Center

We describe simple methods to study the regulation of intestinal serotonin transporter (SERT) function and expression using an in vitro cell culture model of Caco-2 cells grown in 3D and an ex vivo model of mouse intestines. These methods are applicable to the study of other epithelial transporters.

image

Kidney Organoid Generation at the Air-Liquid Interface
Ashwani Kumar Gupta 1,2, David Z. Ivancic 1, Bilal A. Naved 1,3, Jason A. Wertheim 1,2,3,4,5,6, Leif Oxburgh 7
1Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, 2Department of Surgery, Northwestern University Feinberg School of Medicine, 3Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 4Simpson Querrey Institute for BioNanotechnology, Northwestern University, 5Chemistry of Life Processes Institute, Northwestern University, 6Department of Surgery, Jesse Brown VA Medical Center, 7The Rogosin Institute

This protocol describes asynchronous mixing of human embryonic stem cells derived kidney progenitors at the air-liquid interface to efficiently generate kidney organoids.

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.