The precise localization of Golgi residents is essential for understanding the cellular functions of the Golgi. However, conventional optical microscopy is unable to resolve the sub-Golgi structure. Here we describe the protocol for a conventional microscopy based super-resolution method to quantitatively determine the sub-Golgi localization of a protein.
We describe detailed protocols for using FLLIT, a fully automated machine learning method for leg claw movement tracking in freely moving Drosophila melanogaster and other insects. These protocols can be used to quantitatively measure subtle walking gait movements in wild type flies, mutant flies and fly models of neurodegeneration.