S'identifier

Australian Synchrotron

2 ARTICLES PUBLISHED IN JoVE

image

Engineering

In Situ Neutron Powder Diffraction Using Custom-made Lithium-ion Batteries
William R. Brant 1, Siegbert Schmid 1, Guodong Du 2, Helen E. A. Brand 3, Wei Kong Pang 2,4,5, Vanessa K. Peterson 4, Zaiping Guo 2,5, Neeraj Sharma 6
1School of Chemistry, University of Sydney, 2Institute for Superconducting & Electronic Materials, University of Wollongong, 3Australian Synchrotron, 4Australian Nuclear Science and Technology Organisation, 5School of Mechanical, Materials, and Mechatronic Engineering, University of Wollongong, 6School of Chemistry, University of New South Wales

We describe the design and construction of an electrochemical cell for the examination of electrode materials using in situ neutron powder diffraction (NPD). We briefly comment on alternate in situ NPD cell designs and discuss methods for the analysis of the corresponding in situ NPD data produced using this cell.

image

Engineering

The Evolution of Silica Nanoparticle-polyester Coatings on Surfaces Exposed to Sunlight
Vi Khanh Truong 1, Miljan Stefanovic 1, Shane Maclaughlin 2, Mark Tobin 3, Jitraporn Vongsvivut 3, Mohammad Al Kobaisi 1, Russell J. Crawford 4, Elena P. Ivanova 1
1School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, 2BlueScope Steel Research, 3Infrared Microspectroscopy Beamline, Australian Synchrotron, 4School of Science, College of Science, Engineering and Health, RMIT University

Two types of surfaces, polyester-coated steel and polyester coated with a layer of silica nanoparticles, were studied. Both surfaces were exposed to sunlight, which was found to cause substantial changes in the chemistry and nanoscale topography of the surface.

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.