Two adjacent fluids passing through a grooved microfluidic channel can be directed to form a sheath around a prepolymer core; thereby determining both shape and cross-section. Photoinitiated polymerization, such as thiol click chemistry, is well suited for rapidly solidifying the core fluid into a microfiber with predetermined size and shape.
A protocol is described wherein CO2 mineralized from organic contaminant (derived from petroleum feedstocks) biodegradation is trapped, quantified, and analyzed for 14C content. A model is developed to determine CO2 capture zone's spatial extent. Spatial and temporal measurements allow integrating contaminant mineralization rates for predicting remediation extent and time.
We demonstrate the use of the Laser-induced forward transfer technique (LIFT) for the printing of high-viscosity Ag paste. This technique offers a simple, low temperature, robust process for non-lithographically printing microscale 2D and 3D structures.
Isolating electrical and thermal effects on electrically assisted deformation (EAD) is very difficult using macroscopic samples. Metallic sample micro- and nanostructures together with a custom test procedure have been developed to evaluate the impact of applied current on the formation without joule heating and evolution of dislocations on these samples.
The Controlled Odor Mimic Permeation System is a simple, field-portable, low-cost method of odor delivery for olfactory testing and training. It is constructed of an odorant retained on an adsorbent material and contained inside of a permeable polymer bag allowing controlled release of the odorant vapor over time.
The present protocol involves the measurement and characterization of 3D shape deformation in underwater flapping fins built with polydimethylsiloxane (PDMS) materials. Accurate reconstruction of these deformations is essential for understanding the propulsive performance of compliant flapping fins.