Systematic, large-scale synthetic genetic (gene-gene or epistasis) interaction screens can be used to explore genetic redundancy and pathway cross-talk. Here, we describe a high-throughput quantitative synthetic genetic array screening technology, termed eSGA that we developed for elucidating epistatic relationships and exploring genetic interaction networks in Escherichia coli.
Affinity purification of tagged proteins in combination with mass spectrometry (APMS) is a powerful method for the systematic mapping of protein interaction networks and for investigating the mechanistic basis of biological processes. Here, we describe an optimized sequential peptide affinity (SPA) APMS procedure developed for the bacterium Escherichia coli that can be used to isolate and characterize stable multi-protein complexes to near homogeneity even starting from low copy numbers per cell.