The goal of this experiment is to determine and control the size, shape and stability of self-assembled discotic amphiphiles in water. For aqueous based supramolecular polymers such level of control is very difficult. We apply a strategy using both repulsive and attractive interactions. The experimental techniques applied to characterize this system are broadly applicable.
FIM is a novel, cost effective imaging system designed to track small moving objects such as C. elegans, planaria or Drosophila larvae. The accompanying FIMTrack program is designed to deliver fast and efficient data analysis. Together, these tools allow high-throughput analysis of behavioral traits.
Analyses of the sulfur isotopic composition (δ34S) of pyrite from methane-bearing sediments have typically focused on bulk samples. Here, we applied secondary ion mass spectroscopy to analyze the δ34S values of various pyrite generations to understand the diagenetic history of pyritization.