Targeting brain-resident cells for direct lineage-reprogramming offers new perspectives for brain repair. Here we describe a protocol of how to prepare cultures enriched for brain-resident pericytes from the adult human cerebral cortex and convert these into induced neurons by retrovirus-mediated expression of the transcription factors Sox2 and Ascl1.
Here we present development of a mock circulation setup for multimodal therapy evaluation, pre-interventional planning, and physician-training on cardiovascular anatomies. With the application of patient-specific tomographic scans, this setup is ideal for therapeutic approaches, training, and education in individualized medicine.
The presented method offers an innovative way for engineering biomimetic fiber structures in three-dimensional (3D) scaffolds (e.g., heart valve leaflets). 3D-printed, conductive geometries were used to determine shape and dimensions. Fiber orientation and characteristics were individually adjustable for each layer. Multiple samples could be manufactured in one setup.