S'identifier

University College London (UCL)

6 ARTICLES PUBLISHED IN JoVE

image

Biology

Direct Protein Delivery to Mammalian Cells Using Cell-permeable Cys2-His2 Zinc-finger Domains
Thomas Gaj *1, Jia Liu *1,2
1Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, 2Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University

Zinc-finger domains are intrinsically cell-permeable and capable of mediating protein delivery into a broad range of mammalian cell types. Here, a detailed step-by-step protocol for implementing zinc-finger technology for intracellular protein delivery is presented.

image

Neuroscience

Optogenetic Functional MRI
Peter Lin 1, Zhongnan Fang 2, Jia Liu 1, Jin Hyung Lee 1,2
1Neurology and Neurological Sciences, Stanford University, 2Electrical Engineering, Neurology and Neurological Sciences, Stanford University

This protocol describes the steps and data analysis required to successfully perform optogenetic functional magnetic resonance imaging (ofMRI). ofMRI is a novel technique that combines high-field fMRI readout with optogenetic stimulation, allowing for cell type-specific mapping of functional neural circuits and their dynamics across the whole living brain.

image

Engineering

Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging
Colin R. Crick *1, Sacha Noimark *2,3, William J. Peveler *3, Joseph C. Bear 3, Aleksandar P. Ivanov 1, Joshua B. Edel 1, Ivan P. Parkin 3
1Department of Chemistry, Imperial College London, 2Department of Medical Physics and Biomedical Engineering, University College London, 3Department of Chemistry, University College London

Here we present a reliable method to monitor the incorporation of nanoparticles into a polymer host matrix via swell encapsulation. We show that the surface concentration of cadmium selenide quantum dots can be accurately visualized through cross-sectional fluorescence imaging.

image

Bioengineering

Biomechanical Characterization of Human Soft Tissues Using Indentation and Tensile Testing
Michelle Griffin 1, Yaami Premakumar 2, Alexander Seifalian 1, Peter Edward Butler 1,3, Matthew Szarko 2
1Division of Surgery & Interventional Science, University College London (UCL), 2Anatomy Department, St Georges University, 3Plastic & Reconstructive Surgery Department, Royal Free Hospital

Tissue biomechanics is important for maintaining cell shape and function and for determining phenotype. This report demonstrates non-destructive mechanical protocols for characterizing elastic and viscoelastic properties of human soft tissues, which can be directly applied to tissue-engineered substrates to allow a close matching of engineered materials to native tissue.

image

Chemistry

Quantitative SERS Detection of Uric Acid via Formation of Precise Plasmonic Nanojunctions within Aggregates of Gold Nanoparticles and Cucurbit[n]uril
Weng-I Katherine Chio 1, Gemma Davison 1, Tabitha Jones 1, Jia Liu 1, Ivan P. Parkin 1, Tung-Chun Lee 1,2
1Department of Chemistry, University College London (UCL), 2Institute for Materials Discovery, University College London (UCL)

A host-guest complex of cucurbit[7]uril and uric acid was formed in an aqueous solution before adding a small amount into Au NP solution for quantitative surface-enhanced Raman spectroscopy (SERS) sensing using a modular spectrometer.

image

Biochemistry

Purification of Endogenous Drosophila Transient Receptor Potential Channels
Jia Liu *1, Yuyang Liu *1, Weidi Chen 1, Yuzhen Ding 1, Xiaoru Lan 1, Wei Liu 1
1Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center

Based on the assembling mechanism of the INAD protein complex, in this protocol, a modified affinity purification plus competition strategy was developed to purify the endogenous Drosophila TRP channel.

Nous utilisons des cookies afin d'améliorer votre expérience sur notre site web.

En continuant à utiliser notre site ou en cliquant sur le bouton ''continuer'', vous acceptez l'utilisation de cookies.