This technique exposes the Drosophila embryonic neuromusculature for immunohistochemistry or electrophysiological recording. It is useful for studying early events in neuromuscular development or performing electrophysiology in mutants that cannot hatch.
Electrophysiological recordings from Drosophila embryos allow analyses of developing muscle and neuron electrical properties, as well as characterization of functional synaptogenesis at the glutamatergic neuromuscular junction and central cholinergic and GABAergic synapses.
Synaptic vesicle (SV) cycling is the core mechanism of intercellular communication at neuronal synapses. FM dye uptake and release are the primary means of quantitatively assaying SV endo- and exocytosis. Here, we compare all the stimulation methods to drive FM1-43 cycling at the Drosophila neuromuscular junction (NMJ) model synapse.
We describe here methods for inducing and analyzing olfactory experience-dependent remodeling of antennal lobe synaptic glomeruli in the Drosophila juvenile brain.