S'identifier

Chapter 5

Equilibrium of a Rigid Body

Conditions d’équilibre
Conditions d’équilibre
Equilibrium refers to a state where a rigid body is not subjected to any translational or rotational motion. This state is achieved when the force and ...
Réactions de soutien
Réactions de soutien
A coplanar force system refers to a set of forces that all lie in the same plane and are subject to different reactions between the point of contact and ...
Forces internes et centre de gravité
Forces internes et centre de gravité
Internal forces and the center of gravity are fundamental concepts in mechanics, playing a crucial role in understanding the behavior and stability of ...
Ensembles alternatifs d’équations d’équilibre
Ensembles alternatifs d’équations d’équilibre
When analyzing the behavior of structures, engineers often rely on the concept of equilibrium. This refers to the state where all forces and moments ...
Deux membres de la Force
Deux membres de la Force
The equilibrium of a two-force body is a particular case that is often encountered in practical applications. A two-force body is a rigid body that is ...
Trois membres de la Force
Trois membres de la Force
A rigid body subjected to three forces acting at three points is known as a three-force member. These forces must have concurrent lines of action, except ...
Équations d’équilibre en trois dimensions
Équations d’équilibre en trois dimensions
When analyzing structures or systems at rest, it is necessary to ensure they are in equilibrium. This is where the vector and scalar equations of ...
Soutenir les réactions en trois dimensions
Soutenir les réactions en trois dimensions
Support reactions in three dimensions help maintain the stability and equilibrium of various structures and systems. These reactions prevent the system ...
Contraintes et détermination statique
Contraintes et détermination statique
In structural engineering, the equilibrium of a system is not only determined by its equations of equilibrium but also with the help of constraints. ...
JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.