S'identifier

Learning to draw Fischer projections of molecules and understanding their relevance plays a crucial role in the visual depiction of organic molecules. A Fischer projection is a two-dimensional projection on a planar surface to simplify the three-dimensional wedge–dash representation of molecules. This is especially helpful in the case of molecules with multiple chiral centers that can be difficult to draw. Here, all the bonds of interest are represented as horizontal or vertical lines. While the vertical lines represent an orientation away from the viewer, the horizontal lines indicate the groups directed towards the viewer. While molecules with a single chiral center can be transformed to their Fischer projections in a single step, converting the wedge–dash representation of a molecule with multiple chiral centers into its Fischer projection is a two-fold process.

First, the molecule is rotated to orient the carbon chain from top-to-bottom, with C-1 at the top. Next, the configuration at the lowest-numbered chiral center is visualized such that the substituents point towards the viewer and the carbon backbone is slanted away. Repeating this systematically for all chiral centers generates the Fischer projection of the entire molecule. A rotation of the molecule in the plane of the Fischer projection by 180° makes no difference, but a 180° rotation out of the plane of the projection generates the molecule’s enantiomer. One must note that the Fischer projections are just a simple 2D representation. They do not directly correlate to the actual 3D spatial structure of the molecule.

Eq1

Figure 1: Different representation of a glucose molecule: (a) Fischer projection, (b) Wedge–dash, (c) Haworth projection, and (d) Chair conformation

While Fischer projections are commonly used to depict sugars in an open-chain form, the Haworth projections are typically used to depict their cyclic forms. For the Fischer projection of cyclic glucose molecule in Figure 1(a), the corresponding Haworth projection is presented in Figure 1(c). It should be noted that although Haworth projection is convenient to present stereochemistry, it fails to provide a realistic measure of the conformation. Therefore, to emphasize both conformation and stereochemistry in a molecule, the chair presentation is used (depicted in Figure 1(d)).

Tags
Fischer ProjectionsVisual DepictionOrganic MoleculesTwo dimensional ProjectionPlanar SurfaceThree dimensional Wedge dash RepresentationChiral CentersHorizontal LinesVertical LinesMolecule RotationCarbon ChainSubstituentsCarbon BackboneSlanted AwayEnantiomer

Du chapitre 4:

article

Now Playing

4.7 : Fischer Projections

Stéréoisomérie

12.6K Vues

article

4.1 : Chiralité

Stéréoisomérie

21.6K Vues

article

4.2 : Isomérie

Stéréoisomérie

17.3K Vues

article

4.3 : Stéréoisomères

Stéréoisomérie

12.1K Vues

article

4.4 : Nomenclature des énantiomères

Stéréoisomérie

19.4K Vues

article

4.5 : Propriétés des énantiomères et activité optique

Stéréoisomérie

16.3K Vues

article

4.6 : Molécules avec plusieurs centres chiraux

Stéréoisomérie

10.8K Vues

article

4.8 : Mélanges racémiques et la résolution des énantiomères

Stéréoisomérie

17.7K Vues

article

4.9 : Stéréoisomérie des composés cycliques

Stéréoisomérie

8.5K Vues

article

4.10 : Chiralité de l'azote, du phosphore et du soufre

Stéréoisomérie

5.5K Vues

article

4.11 : Prochiralité

Stéréoisomérie

3.7K Vues

article

4.12 : La chiralité dans la nature

Stéréoisomérie

11.8K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.