JoVE Logo

S'identifier

12.9 : Incomplete Dominance

Gregor Mendel's work (1822 - 1884) was primarily focused on pea plants. Through his initial experiments, he determined that every gene in a diploid cell has two variants called alleles inherited from each parent. He suggested that amongst these two alleles, one allele is dominant in character and the other recessive. The combination of alleles determines the phenotype of a gene in an organism.

According to Mendel, organisms with both copies or a single copy of the dominant allele display a dominant phenotype. If the organism has both copies of the recessive allele, it will display a recessive phenotype.

In contrast to Mendel's observations, incomplete dominance or partial dominance can be observed in some genes. It is a phenomenon where both alleles of a gene are partially expressed in a heterozygous organism. Here, the dominant allele is not completely expressed, while the recessive allele influences the trait. This results in a phenotype that is an intermix. For example, in a breeding experiment where one parent is homozygous with a long stem and the other parent is homozygous with a short stem, the offspring of the F1 generation have an intermediate stem length. This is an example of non-mendelian inheritance.

Tay Sachs disease is an example of incomplete dominance in humans. Homozygotes with normal alleles (TT) produce an enzyme called beta-hexosaminidase A that is responsible for breaking down lipids byproducts. Homozygotes with recessive alleles (tt) fail to produce the enzyme. This leads to the accumulation of lipid byproducts in the developing brain of fetuses and young children, resulting in their early death. However, heterozygotes (Tt) for the gene produce half the amount of functional enzymes. Here, both the alleles are expressed, but only one of the alleles produces functional enzymes.

Tags

Incomplete DominanceGregor MendelAllelesDominant AlleleRecessive AllelePhenotypeDiploid CellHeterozygous OrganismIntermixBreeding ExperimentF1 GenerationNon mendelian InheritanceTay Sachs DiseaseBeta hexosaminidase A

Du chapitre 12:

article

Now Playing

12.9 : Incomplete Dominance

Génétique mendélienne

20.4K Vues

article

12.1 : Échiquier de Punnett

Génétique mendélienne

11.9K Vues

article

12.2 : croisement monohybride

Génétique mendélienne

7.7K Vues

article

12.3 : Croisement d'hybrides

Génétique mendélienne

5.4K Vues

article

12.4 : Croisements tri-hybrides

Génétique mendélienne

22.7K Vues

article

12.5 : Loi de l'indépendance de la transmission des caractères

Génétique mendélienne

5.4K Vues

article

12.6 : Test du Chi-carré

Génétique mendélienne

35.7K Vues

article

12.7 : Analyse généalogique

Génétique mendélienne

12.3K Vues

article

12.8 : Traits d’allèles multiples

Génétique mendélienne

10.2K Vues

article

12.10 : Allèles létaux

Génétique mendélienne

13.5K Vues

article

12.11 : Caractères polygéniques

Génétique mendélienne

6.0K Vues

article

12.12 : Les prédispositions génétique et l’environnement affecte le phénotype

Génétique mendélienne

6.4K Vues

article

12.13 : Chromosomes X et Y

Génétique mendélienne

20.1K Vues

article

12.14 : Le chromosome Y détermine le sexe masculin

Génétique mendélienne

6.4K Vues

article

12.15 : Le ratio du chromosome X sur les autosomes

Génétique mendélienne

8.4K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.