JoVE Logo

S'identifier

Although the genetic makeup of an organism plays a major role in determining the phenotype, there are also several environmental factors, such as temperature, oxygen availability, presence of mutagens, that can alter an organism’s phenotype.

An example of how genetic background affects phenotype can be seen in horses. The Extension gene in horses is responsible for their coat color. A wild-type gene (EE) produces black pigment in the coat, while a mutant gene (ee) produces red pigment. A modifier gene called cream dilution has two alleles: Ccr and C. The Ccr dilutes the coat color from red to yellow when present in the heterozygous state and from red to cream when present in the homozygous state. However, the C allele does not affect coat color. Thus, the horses with genotype eeCC have a reddish-brown coat, tails, and mane, while those with genotype eeCcrC have a gold coat with a white tail and mane.

In contrast, in some organisms like Siamese cats, the coat color is highly sensitive to changes in temperature. These cats show partial albinism due to a mutation in an enzyme involved in the production of melanin. The enzyme is active in colder areas of the skin, which results in a darker color, while it’s inactive in warmer regions of the skin resulting in a lighter color. This results in the breed’s characteristic dark fur on the face and on the extremities.

Similarly, the presence of drugs or chemicals in an organism's immediate environment can also influence gene expression in the organism. For example, C. R. Stockard showed that the Fundulus heteroclitus fish developed just a single eye when the fertilized egg was placed in the magnesium chloride solution.

In conclusion, there is a complex interaction between the genotype and the environmental factors of an organism that can lead to variable phenotypes.

Tags

BackgroundEnvironmentPhenotypeGenetic MakeupOrganismTemperatureOxygen AvailabilityMutagensCoat ColorExtension GeneWild type GeneMutant GeneCream Dilution GeneAllelesHeterozygous StateHomozygous StateSiamese CatsPartial AlbinismMelanin ProductionEnzyme MutationTemperature SensitivityDrugsChemicals

Du chapitre 12:

article

Now Playing

12.12 : Background and Environment Affect Phenotype

Génétique mendélienne

6.4K Vues

article

12.1 : Échiquier de Punnett

Génétique mendélienne

11.8K Vues

article

12.2 : croisement monohybride

Génétique mendélienne

7.6K Vues

article

12.3 : Croisement d'hybrides

Génétique mendélienne

5.4K Vues

article

12.4 : Croisements tri-hybrides

Génétique mendélienne

22.7K Vues

article

12.5 : Loi de l'indépendance de la transmission des caractères

Génétique mendélienne

5.4K Vues

article

12.6 : Test du Chi-carré

Génétique mendélienne

35.4K Vues

article

12.7 : Analyse généalogique

Génétique mendélienne

12.2K Vues

article

12.8 : Traits d’allèles multiples

Génétique mendélienne

9.9K Vues

article

12.9 : Dominance incomplète

Génétique mendélienne

20.4K Vues

article

12.10 : Allèles létaux

Génétique mendélienne

13.3K Vues

article

12.11 : Caractères polygéniques

Génétique mendélienne

5.7K Vues

article

12.13 : Chromosomes X et Y

Génétique mendélienne

19.8K Vues

article

12.14 : Le chromosome Y détermine le sexe masculin

Génétique mendélienne

6.4K Vues

article

12.15 : Le ratio du chromosome X sur les autosomes

Génétique mendélienne

8.4K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.