S'identifier

When proton-coupled carbon-13 spectra are simplified by a broadband proton decoupling technique, structural information about the coupled protons is lost. Distortionless enhancement by polarization transfer (DEPT) is a technique that provides information on the number of hydrogens attached to each carbon in a molecule. While the DEPT experiment utilizes complex pulse sequences, the pulse delay and flip angle are specifically manipulated. The resulting signals have different phases depending on the number of protons attached to the carbon. As a result, methyl, methylene, and methine carbons produce separate signals, whereas quaternary carbons produce no signal.

The DEPT experiment provides a series of spectra. First, the broadband decoupled carbon-13 spectrum is obtained, which shows the chemical shifts of all nonequivalent carbons. Next in the series is the DEPT-45 spectrum, which shows signals from all the protonated carbons. The DEPT-90 spectrum shows peaks only from –CH groups. Finally, in the DEPT-135 spectrum, methyl and methine carbons appear as positive peaks, while methylene carbons appear as negative peaks. Taken together, the DEPT spectra are very useful for structure elucidation.

Tags

13C NMRDEPTDistortionless Enhancement By Polarization TransferProton coupled Carbon 13 SpectraBroadband Proton DecouplingStructural InformationPulse SequencesPulse DelayFlip AngleMethylMethyleneMethineQuaternary CarbonsChemical ShiftsDEPT 45DEPT 90DEPT 135Structure Elucidation

Du chapitre 8:

article

Now Playing

8.23 : ¹³C NMR: Distortionless Enhancement by Polarization Transfer (DEPT)

Interpreting Nuclear Magnetic Resonance Spectra

926 Vues

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

532 Vues

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Vues

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Vues

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Vues

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

998 Vues

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vues

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.2K Vues

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Vues

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Vues

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vues

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.8K Vues

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vues

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

837 Vues

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

900 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.