Войдите в систему

When proton-coupled carbon-13 spectra are simplified by a broadband proton decoupling technique, structural information about the coupled protons is lost. Distortionless enhancement by polarization transfer (DEPT) is a technique that provides information on the number of hydrogens attached to each carbon in a molecule. While the DEPT experiment utilizes complex pulse sequences, the pulse delay and flip angle are specifically manipulated. The resulting signals have different phases depending on the number of protons attached to the carbon. As a result, methyl, methylene, and methine carbons produce separate signals, whereas quaternary carbons produce no signal.

The DEPT experiment provides a series of spectra. First, the broadband decoupled carbon-13 spectrum is obtained, which shows the chemical shifts of all nonequivalent carbons. Next in the series is the DEPT-45 spectrum, which shows signals from all the protonated carbons. The DEPT-90 spectrum shows peaks only from –CH groups. Finally, in the DEPT-135 spectrum, methyl and methine carbons appear as positive peaks, while methylene carbons appear as negative peaks. Taken together, the DEPT spectra are very useful for structure elucidation.

Теги

13C NMRDEPTDistortionless Enhancement By Polarization TransferProton coupled Carbon 13 SpectraBroadband Proton DecouplingStructural InformationPulse SequencesPulse DelayFlip AngleMethylMethyleneMethineQuaternary CarbonsChemical ShiftsDEPT 45DEPT 90DEPT 135Structure Elucidation

Из главы 8:

article

Now Playing

8.23 : ¹³C NMR: Distortionless Enhancement by Polarization Transfer (DEPT)

Interpreting Nuclear Magnetic Resonance Spectra

925 Просмотры

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

531 Просмотры

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Просмотры

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Просмотры

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Просмотры

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

997 Просмотры

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.2K Просмотры

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Просмотры

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Просмотры

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.8K Просмотры

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

834 Просмотры

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

898 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены