JoVE Logo

S'identifier

Les protéines remplissent de nombreuses fonctions mécaniques dans une cellule. Ces protéines peuvent être classées en deux catégories générales : les protéines qui génèrent des forces mécaniques et les protéines qui sont soumises à des forces mécaniques. Les protéines fournissant un support mécanique à la structure de la cellule, telles que la kératine, sont soumises à une force mécanique, tandis que les protéines impliquées dans le mouvement cellulaire et le transport de molécules à travers les membranes cellulaires, comme une pompe à ions, sont des exemples de génération de force mécanique.

Des fonctions telles que le mouvement cellulaire et la contraction musculaire nécessitent la conversion de l'énergie chimique en énergie mécanique, généralement par le biais de changements conformationnels. Par exemple, l'hydrolyse des nucléosides triphosphates, tels que l'ATP et le GTP, peut entraîner un petit changement de conformation qui s'amplifie en changements structurels majeurs. Par exemple, EF-Tu est une protéine avec trois domaines distincts qui transfère une molécule d'ARNt au ribosome. L'un des domaines se lie au GTP et l'hydrolyse du GTP en GDP entraîne un changement de conformation du site de liaison des nucléotides en raison du phosphate inorganique libéré. Cela déclenche le mouvement d'une hélice alpha située à l'interface du domaine GTP et des deux autres domaines modifiant la position relative des domaines l'un par rapport à l'autre. Cela permet à la protéine de libérer l'ARNt qui est maintenu à l'interface par les trois domaines, lui permettant ainsi de se déplacer dans le ribosome.

Certaines protéines, telles que l'actine, assurent de nombreux types de fonctions mécaniques. Par exemple, l'actine agit comme une piste pour la protéine mécanique myosine à parcourir. Selon le type, la myosine peut remplir diverses fonctions, telles que tirer sur les filaments d'actine ou transporter un organite attaché le long du filament. Dans le cadre du cytosquelette, les filaments d'actine agissent comme un support mécanique pour la structure cellulaire. Au cours du mouvement cellulaire, ces filaments exercent une pression sur la membrane cellulaire, provoquant la formation de filopodes et de lamellipodes, des extensions de la membrane cellulaire qui permettent à la cellule de migrer vers un nouvel emplacement. Les scientifiques ont développé des techniques, telles que des pincettes optiques, qui peuvent mesurer la force produite par l'actine lors de la déformation de la membrane.

Tags

Here Are The Most Relevant Keywords From The Given Text Mechanical Protein FunctionProtein FunctionProtein

Du chapitre 6:

article

Now Playing

6.10 : Mechanical Protein Function

Fonction des protéines

4.9K Vues

article

6.1 : Sites de liaison au ligand

Fonction des protéines

7.5K Vues

article

6.2 : Interfaces protéine-protéine

Fonction des protéines

3.6K Vues

article

6.3 : Sites de liaisons au ligand conservés

Fonction des protéines

1.6K Vues

article

6.4 : Co-facteurs et coenzymes

Fonction des protéines

10.9K Vues

article

6.5 : Coopérativité

Fonction des protéines

2.3K Vues

article

6.6 : Protéines kinases et phosphatases

Fonction des protéines

3.8K Vues

article

6.7 : GTPases et leur régulation

Fonction des protéines

2.2K Vues

article

6.8 : Régulateurs protéiques liés de façon covalente

Fonction des protéines

1.6K Vues

article

6.9 : Complexe protéique avec des éléments interchangeables

Fonction des protéines

1.8K Vues

article

6.11 : Fonction des protéines de structure

Fonction des protéines

2.7K Vues

article

6.12 : Réseau protéique

Fonction des protéines

2.2K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.