JoVE Logo

S'identifier

5.3 : Newton's First Law: Introduction

Motion draws our attention. Motion itself can be beautiful, causing us to marvel at the forces needed to create spectacular sights, such as that of a dolphin jumping out of the water, the flight of a bird, or the orbit of a satellite. The study of motion is kinematics, but kinematics only describes the way objects move—their velocity and acceleration. Dynamics considers the forces that affect the motion of moving objects and systems. Newton's laws of motion are the foundation of dynamics. These laws provide examples of the breadth and simplicity of the principles under which nature functions. They are also universal laws, in that they apply to similar situations on Earth and in space. Isaac Newton's (1642–1727 AD) laws of motion were just one aspect of the monumental work that has made him legendary. The development of Newton's laws marked the transition from the Renaissance to the modern era. This transition was characterized by a revolutionary change in the way people thought about the physical universe. For centuries, natural philosophers had debated the nature of the universe based mainly on certain rules of logic, with great weight given to the thoughts of earlier classical philosophers such as Aristotle (384–322 BC). Among the many great thinkers who contributed to this change were Newton and Galileo.

Galileo (1564-1642 AD) contributed to the formation of what is now called Newton's first law of motion. Newton made use of the work of his predecessors, which enabled him to develop laws of motion, discover the law of gravity, invent calculus, and make great contributions to the theories of light and color. Amazingly, many of these developments were made with Newton working alone, without the benefit of the peer interactions that take place among scientists today.

Newton's first law of motion suggests that a body stays in the same state, whether at rest or in motion (moving with constant velocity), until or unless an external force is applied to it. Note the expression “constant velocity”; this means that the body maintains a path along a straight line since neither the magnitude nor the direction of the velocity vector changes. Newton's first law says that there must be a cause for any change in velocity (a change in either magnitude or direction) to occur. We can think of this law as preserving the status quo of motion. It is general, and can be applied to anything from an object sliding on a table, to a satellite in orbit, to blood pumped from the heart. Experiments have verified that any change in velocity (speed or direction) must be caused by an external force.

This text is adapted from Openstax, College Physics, Section 4.0: Introduction to Dynamics: Newton's Laws of Motion and Openstax University Physics, Section 5.2: Newton's First Law.

Tags

Newton s First LawMotionKinematicsDynamicsForcesVelocityAccelerationIsaac NewtonGalileoExternal ForceConstant VelocityChange In Velocity

Du chapitre 5:

article

Now Playing

5.3 : Newton's First Law: Introduction

Les lois du mouvement de Newton

22.6K Vues

article

5.1 : Force

Les lois du mouvement de Newton

12.2K Vues

article

5.2 : Les différents types de forces

Les lois du mouvement de Newton

9.5K Vues

article

5.4 : Application de la première loi de Newton

Les lois du mouvement de Newton

13.7K Vues

article

5.5 : Forces intérieures et force extérieures

Les lois du mouvement de Newton

12.2K Vues

article

5.6 : La deuxième loi de Newton

Les lois du mouvement de Newton

23.3K Vues

article

5.7 : Masse et poids

Les lois du mouvement de Newton

11.4K Vues

article

5.8 : Apesanteur

Les lois du mouvement de Newton

4.9K Vues

article

5.9 : Poids apparent

Les lois du mouvement de Newton

8.0K Vues

article

5.10 : Introduction à la troisième loi de Newton

Les lois du mouvement de Newton

22.5K Vues

article

5.11 : Exemples de la troisième loi de Newton

Les lois du mouvement de Newton

20.5K Vues

article

5.12 : Règles pour dessiner un diagramme de corps libre

Les lois du mouvement de Newton

12.7K Vues

article

5.13 : Exemples de diagrammes de corps libre

Les lois du mouvement de Newton

11.7K Vues

article

5.14 : Référentiels galiléens

Les lois du mouvement de Newton

6.9K Vues

article

5.15 : Référentiels non galiléens

Les lois du mouvement de Newton

5.7K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.