S'identifier

Fluid dynamics is the study of fluids in motion. Velocity vectors are often used to illustrate fluid motion in applications like meteorology. For example, wind—the fluid motion of air in the atmosphere—can be represented by vectors indicating the speed and direction of the wind at any given point on a map. Another method for representing fluid motion is a streamline. A streamline represents the path of a small volume of fluid as it flows. When the flow pattern changes with time, the streamlines do not coincide with the flow lines. The velocity is always tangential to the streamline.

Fluid flow can be either laminar or turbulent. Laminar flow (sometimes described as a steady flow) is represented by smooth, parallel streamlines, whereas in turbulent flow, the streamlines are irregular and change over time. In turbulent flow, the paths of the fluid flow are irregular as different parts of the fluid mix together or form small circular regions that resemble whirlpools. This can occur when the speed of a fluid reaches a certain critical speed.

For example, smoke rises from incense sticks smoothly for a while and then begins to form swirls and eddies. The smooth flow is called laminar flow, whereas the swirls and eddies typify turbulent flow. In another example, normal blood flow in the human aorta is laminar, but a small disturbance, such as a heart pathology, can cause the flow to become turbulent. Additionally, the flow of water from a faucet is laminar at low speeds but becomes turbulent at sufficiently high speed.

This text is adapted from Openstax, College Physics, Section 12.4: Viscosity and Laminar Flow; Poiseuille's Law and Openstax, University Physics Volume 1, Section 14.5: Fluid Dynamics.

Tags

Fluid DynamicsLaminar FlowTurbulent FlowVelocity VectorsStreamlineFluid MotionCritical SpeedBlood FlowEddiesSwirlsPoiseuille s LawViscosity

Du chapitre 13:

article

Now Playing

13.16 : Laminar and Turbulent Flow

Mécanique des fluides

8.1K Vues

article

13.1 : Caractéristiques des fluides

Mécanique des fluides

3.4K Vues

article

13.2 : Densité

Mécanique des fluides

12.6K Vues

article

13.3 : Pression des fluides

Mécanique des fluides

13.2K Vues

article

13.4 : Variation de la pression atmosphérique

Mécanique des fluides

1.8K Vues

article

13.5 : Le principe de Pascal

Mécanique des fluides

7.7K Vues

article

13.6 : Application du principe de Pascal

Mécanique des fluides

7.6K Vues

article

13.7 : Manomètres

Mécanique des fluides

2.8K Vues

article

13.8 : Flottabilité

Mécanique des fluides

6.9K Vues

article

13.9 : Le principe d'Archimède

Mécanique des fluides

7.4K Vues

article

13.10 : Densité et poussée d'Archimède

Mécanique des fluides

6.4K Vues

article

13.11 : Fluides accélérateurs

Mécanique des fluides

951 Vues

article

13.12 : Tension superficielle et énergie superficielle

Mécanique des fluides

1.2K Vues

article

13.13 : Excès de pression à l’intérieur d’une goutte et d’une bulle

Mécanique des fluides

1.5K Vues

article

13.14 : Contact Angle

Mécanique des fluides

11.3K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.