S'identifier

Vicinal or three-bond coupling is commonly observed between protons attached to adjacent carbons. Here, nuclear spin information is primarily transferred via electron spin interactions between adjacent C‑H bond orbitals. This generally favors the antiparallel arrangement of spins, so 3J values are usually positive.

The extent of coupling depends on the C‑C bond length, the two H‑C‑C angles, any electron-withdrawing substituents, and the dihedral angle between the involved orbitals. The stereoelectronic interactions between the involved orbitals are maximized when the orbitals are synperiplanar at a dihedral angle of zero and minimized when the orbitals are orthogonal. Strong coupling is also seen at 180° when the back lobes of the sp3 orbitals overlap.

The Karplus equation predicts the approximate variation of 3JHH as a function of the dihedral angle.

Figure1

This relationship is evident in the vicinal coupling constants of cyclohexane derivatives, where ring flipping is restricted by the presence of bulky substituents. In acyclic systems, however, single bonds rotate rapidly and the observed coupling constant is an average over all the conformations.

Tags

Vicinal CouplingThree bond CouplingNuclear SpinElectron Spin InteractionsC H Bond Orbitals3J ValuesBond LengthDihedral AngleStereoelectronic InteractionsSynperiplanarOrthogonal OrbitalsStrong CouplingKarplus EquationCoupling ConstantsCyclohexane DerivativesRing Flipping

Du chapitre 8:

article

Now Playing

8.16 : Spin–Spin Coupling: Three-Bond Coupling (Vicinal Coupling)

Interpreting Nuclear Magnetic Resonance Spectra

997 Vues

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

540 Vues

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Vues

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Vues

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Vues

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Vues

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vues

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.2K Vues

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Vues

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Vues

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vues

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.9K Vues

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Vues

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

840 Vues

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

902 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.