S'identifier

z scores are the standardized values obtained after converting a normal distribution into a standard normal distribution. A z score is measured in units of the standard deviation. The z score tells you how many standard deviations the value x is above (to the right of) or below (to the left of) the mean, μ. Values of x that are larger than the mean have positive z scores, and values of x that are smaller than the mean have negative z scores. If x equals the mean, then x has a z score of zero. The z score allows us to compare data that are normally distributed but scaled differently.

A standardized graph can help determine the probability function. The area under the density curve between two points corresponds to the probability that the variable falls between those two values. The area under the curve is always 1. One can also find the area for a particular z score by referring to the z score table, which shows the cumulative areas under the standard normal distribution from the left side of the curve.

This text is adapted from Openstax, Introductory Statistics, Section 6.1

Tags
Z ScoresStandard Normal DistributionMeanStandard DeviationProbability FunctionDensity CurveArea Under The CurveCumulative AreasZ Score TableNormal Distribution

Du chapitre 6:

article

Now Playing

6.11 : z Scores and Area Under the Curve

Probability Distributions

10.2K Vues

article

6.1 : Probabilité en statistiques

Probability Distributions

11.9K Vues

article

6.2 : Variables aléatoires

Probability Distributions

11.1K Vues

article

6.3 : Distributions de probabilité

Probability Distributions

6.3K Vues

article

6.4 : Histogrammes de probabilité

Probability Distributions

10.8K Vues

article

6.5 : Des résultats inhabituels

Probability Distributions

3.1K Vues

article

6.6 : Espérance mathématique

Probability Distributions

3.7K Vues

article

6.7 : Distribution de probabilité binomiale

Probability Distributions

9.9K Vues

article

6.8 : Distribution de probabilité de Poisson

Probability Distributions

7.6K Vues

article

6.9 : Distribution uniforme

Probability Distributions

4.6K Vues

article

6.10 : Distribution normale

Probability Distributions

10.3K Vues

article

6.12 : Applications de la distribution normale

Probability Distributions

4.8K Vues

article

6.13 : Distribution de l’échantillonnage

Probability Distributions

11.2K Vues

article

6.14 : Théorème central limite

Probability Distributions

13.3K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.