S'identifier

P-value is one of the most crucial concepts in statistics.

P-value stands for the probability value. P-value is the probability that, if the null hypothesis is true, the results from another randomly selected sample will be as extreme or more extreme as the results obtained from the given sample.

A large P-value calculated from the data indicates to not reject the null hypothesis. But a higher P-value does not mean that the null hypothesis is true. The smaller the P-value, the more unlikely the outcome and the stronger the evidence is against the null hypothesis. The null hypothesis is rejected if the evidence is strongly against it. Generally, P-value < 0.05 is considered statistically significant, where 0.05 is the pre-decided significance level.

P-value is not a probability of rejecting the null hypothesis. It is neither a permissible statistical error nor a sampling error that may occur while conducting an experiment or collecting data. It is also not an error rate. P-value also does not mean that there is a 95% chance (at a pre-decided 95% significance level) that the observed difference or the outcome is real. P-value does not convey any information about the truth of null or alternative hypotheses.

Tags
P valueProbability ValueNull HypothesisStatistical SignificanceEvidenceSampling ErrorStatistical ErrorSignificance LevelHypothesis TestingOutcome Likelihood

Du chapitre 9:

article

Now Playing

9.4 : P-value

Hypothesis Testing

6.4K Vues

article

9.1 : Qu’est-ce qu’une hypothèse ?

Hypothesis Testing

9.1K Vues

article

9.2 : Hypothèses nulles et alternatives

Hypothesis Testing

7.5K Vues

article

9.3 : Région critique, valeurs critiques et niveau de signification

Hypothesis Testing

11.4K Vues

article

9.5 : Types de tests d’hypothèses

Hypothesis Testing

24.9K Vues

article

9.6 : Prise de décision : méthode de la valeur P

Hypothesis Testing

5.0K Vues

article

9.7 : Prise de décision : méthode traditionnelle

Hypothesis Testing

3.8K Vues

article

9.8 : Hypothèse : accepter ou ne pas rejeter ?

Hypothesis Testing

26.9K Vues

article

9.9 : Erreurs dans les tests d’hypothèses

Hypothesis Testing

3.9K Vues

article

9.10 : Tester une affirmation sur la proportion de la population

Hypothesis Testing

3.2K Vues

article

9.11 : Test d’une allégation sur la moyenne : Population connue SD

Hypothesis Testing

2.6K Vues

article

9.12 : Test d’une affirmation sur la moyenne : Population inconnue ET

Hypothesis Testing

3.3K Vues

article

9.13 : Test d’une affirmation sur l’écart-type

Hypothesis Testing

2.4K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.