S'identifier

When an archer pulls the string in a bow, he saves the work done in the form of elastic potential energy. When he releases the string, the potential energy is released as kinetic energy of the arrow. A capacitor works on the same principle in which the work done is saved as electric potential energy. The potential energy (UC) could be calculated by measuring the work done (W) to charge the capacitor.

Equation1

Let us consider the case of a parallel plate capacitor. When the capacitor is connected to a battery, the plate attached to the battery's negative side gets more electrons, repelling more electrons in the other plate. Hence the second plate gets an equal positive charge. At any instant of time when the capacitor is getting charged, if q and V are the charge and potential difference across the plates, respectively, then they are related by the following equation:

Equation2

In equation (2), C is the capacitance of the parallel plate capacitor. As the capacitor is being charged, the charge gradually builds upon its plates, and after some time, it reaches the final value Q. The amount of work done (dW) to move a charge element dq is Vdq. We get the potential energy stored in the capacitor using the equations (1) and (2). Thus,

Equation3

We can now find the energy density stored in vacuum between the plates of a charged parallel-plate capacitor from the potential energy stored in a capacitor. The energy density is then defined as the potential energy per unit volume. If A and d are the area and distance between the plates, then from the expressions for electric field and capacitance, that is E = σ/εo and C = εo A/d, the energy density is obtained as:

Equation4

Tags
Energy StoredCapacitorElastic Potential EnergyKinetic EnergyElectric Potential EnergyWork DoneParallel Plate CapacitorChargePotential DifferenceCapacitanceEnergy DensityElectric Field

Du chapitre 25:

article

Now Playing

25.5 : Energy Stored in a Capacitor

Capacitance

3.4K Vues

article

25.1 : Condensateurs et capacité

Capacitance

7.1K Vues

article

25.2 : Condensateur sphérique et cylindrique

Capacitance

5.2K Vues

article

25.3 : Condensateurs en série et en parallèle

Capacitance

3.7K Vues

article

25.4 : Capacité équivalente

Capacitance

1.3K Vues

article

25.6 : Énergie stockée dans un condensateur : résolution de problèmes

Capacitance

977 Vues

article

25.7 : Condensateur avec un diélectrique

Capacitance

3.7K Vues

article

25.8 : Polarisation diélectrique dans un condensateur

Capacitance

4.4K Vues

article

25.9 : Loi de Gauss dans les diélectriques

Capacitance

4.0K Vues

article

25.10 : Potentiel dû à un objet polarisé

Capacitance

327 Vues

article

25.11 : susceptibilité, permittivité et constante diélectrique

Capacitance

1.2K Vues

article

25.12 : Conditions aux limites électrostatiques dans les diélectriques

Capacitance

941 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.