S'identifier

Electromagnetic waves are consistent with Ampere's law. Assuming there is no conduction current Ampere's law is given as:

Equation1

Figure1

Consider a plane wavefront traveling in the positive x-direction as shown in figure. Over it, consider a rectangle in the xz-plane, with an area vector in the positive y-direction. The integration is performed counterclockwise around the rectangle to solve the left-hand side of Ampere's law. The magnetic field is either zero or perpendicular to the length elements except for one length, where the field is parallel. This length contributes to the integral, giving a non-zero value.

To satisfy Ampere's law, the right side of Ampere's law must also be non-zero. Therefore, the electric field must have a y-component that can provide a non-zero time derivative of electric flux. It also establishes that the electric and magnetic fields must be mutually perpendicular. The electric flux increases to a positive value in time, dt. The rate of change of electric flux can be substituted in Ampere's law.

Equation2

Since electromagnetic waves are consistent with all of Maxwell's equations, the obtained expression is compared with the expression derived using Faraday's law, which gives wave propagation speed in the vacuum.

Equation3

When the numerical values of permeability and permittivity are substituted, the propagation speed obtained is equal to the speed of light.

Equation4

It implies that the assumed wave is consistent with all of Maxwell's equations, provided that the wavefront moves with speed given above, which is recognized as the speed of light. Note that the exact value of the speed of light is defined to be 299,792,458 m/s.

Tags
Propagation SpeedElectromagnetic WavesAmpere s LawMagnetic FieldElectric FieldElectric FluxMaxwell s EquationsFaraday s LawSpeed Of LightPermeabilityPermittivity

Du chapitre 33:

article

Now Playing

33.7 : Propagation Speed of Electromagnetic Waves

Electromagnetic Waves

3.3K Vues

article

33.1 : Ondes électromagnétiques

Electromagnetic Waves

8.3K Vues

article

33.2 : Génération de rayonnements électromagnétiques

Electromagnetic Waves

2.3K Vues

article

33.3 : Le spectre électromagnétique

Electromagnetic Waves

13.5K Vues

article

33.4 : Équation des ondes électromagnétiques

Electromagnetic Waves

901 Vues

article

33.5 : Ondes électromagnétiques planes I

Electromagnetic Waves

3.5K Vues

article

33.6 : Ondes électromagnétiques planes II

Electromagnetic Waves

3.0K Vues

article

33.8 : Ondes électromagnétiques dans la matière

Electromagnetic Waves

2.9K Vues

article

33.9 : Énergie transportée par les ondes électromagnétiques

Electromagnetic Waves

2.7K Vues

article

33.10 : Intensité des ondes électromagnétiques

Electromagnetic Waves

4.2K Vues

article

33.11 : Quantité de mouvement et pression de rayonnement

Electromagnetic Waves

1.8K Vues

article

33.12 : Pression de rayonnement : résolution de problèmes

Electromagnetic Waves

259 Vues

article

33.13 : Ondes électromagnétiques stationnaires

Electromagnetic Waves

1.4K Vues

article

33.14 : Ondes stationnaires dans une cavité

Electromagnetic Waves

780 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.