S'identifier

Each human somatic cell contains 6 billion base pairs of DNA. Each base pair is 0.34 nm long, meaning each diploid cell contains a staggering 2 meters of DNA. This long DNA strand is packed inside a nucleus measuring only 10-20 microns in diameter with the help of specialized DNA-binding proteins called histones. Together they form a compact DNA-protein complex called chromatin. The chromatin is further compacted into higher-order structures. The highest level of compaction is achieved during the cell cycle's metaphase, where the chromatin condenses to form the chromatids of a chromosome.

Nucleosomes

Nucleosomes are the basic functional and repeating unit of chromatin. A nucleosome consists of 8 histone proteins wound around by 147 base pairs of DNA. Under electron microscopy, the chromatin resembles beads on a string due to the presence of nucleosomes along its length. The packaging of DNA into nucleosomes shortens its length by sevenfold.

Solenoid model

The nucleosomes are further coiled into 30 nm fibers. Such compaction is explained by a widely accepted hypothesis - the solenoid model. A solenoid refers to the structure of a wire coiled on a central axis. This model proposes that nucleosomes are arranged in a left-handed helical conformation with six or more nucleosomes per turn. One of the non-core histone proteins, H1, plays an essential role in nucleosome compaction; in its absence, the chromatin fiber turns into irregular clumps of nucleosomes.

Compaction also makes DNA less accessible to the replication and transcription enzymes. As a result, less condensed chromatin, called euchromatin, is more accessible to transcription enzymes as compared to densely packed heterochromatin.

Chromatin packaging is an active area of research. The emerging data has allowed scientists to view chromatin and nucleosomes not as highly defined structures but as a continuum of various inter-convertible conformations at all chromatin packaging stages.

This text is adapted from Openstax, Anatomy and Physiology 2e, Section 3.3: Nucleus and DNA replication and Openstax, Biology, Section 10.1: Cell division.

Tags
Chromatin PackagingDNA Base PairsHistonesNucleosomesChromatidSolenoid ModelEuchromatinHeterochromatinDNA CompactionCell CycleDNA binding ProteinsTranscription EnzymesDNA AccessibilityNucleosome Structure

Du chapitre 5:

article

Now Playing

5.7 : Chromatin Packaging

Cells and their Components

16.4K Vues

article

5.1 : Que sont les cellules ?

Cells and their Components

1.7K Vues

article

5.2 : Diversité cellulaire

Cells and their Components

2.7K Vues

article

5.3 : Cytoplasme

Cells and their Components

1.5K Vues

article

5.4 : Le Noyau

Cells and their Components

1.2K Vues

article

5.5 : Le nucléosome

Cells and their Components

1.2K Vues

article

5.6 : La particule du noyau du nucléosome

Cells and their Components

788 Vues

article

5.8 : Le réticulum endoplasmique

Cells and their Components

1.4K Vues

article

5.9 : Appareil de Golgi

Cells and their Components

1.8K Vues

article

5.10 : Lysosomes

Cells and their Components

1.5K Vues

article

5.11 : Mitochondrie

Cells and their Components

1.5K Vues

article

5.12 : Membranes mitochondriales

Cells and their Components

926 Vues

article

5.13 : Peroxysomes

Cells and their Components

817 Vues

article

5.14 : Ribosomes

Cells and their Components

1.5K Vues

article

5.15 : La structure du protéasome

Cells and their Components

614 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.