S'identifier

Diffusion is a type of passive transport. In passive transport, a substance tends to move from an area of high concentration to an area of low concentration until the concentration is equal across the space. For example, take the diffusion of substances through the air. When someone opens a perfume bottle in a room filled with people, the perfume is at its highest concentration in the bottle and is at its lowest at the edges of the room. The perfume vapor will diffuse, or spread away, from the bottle, and gradually, more and more people will smell the perfume as it spreads. Materials move within the cell’s cytosol by diffusion, and certain materials move through the plasma membrane by diffusion. Diffusion expends no energy. Rather the different concentrations of materials in different areas are a form of potential energy, and diffusion is the dissipation of that potential energy as materials move down their concentration gradients from high to low.

Each separate substance in a medium, such as the extracellular fluid, has its own concentration gradient, independent of the concentration gradients of other materials. Additionally, each substance will diffuse according to that gradient.

Several factors affect the rate of diffusion.

  • The extent of the concentration gradient: The greater the difference in concentration, the more rapid the diffusion. The closer the distribution of the material gets to equilibrium, the slower the rate of diffusion becomes.
  • Mass of the molecules diffusing: Larger molecules move more slowly because it is more difficult for them to move between the molecules of the substance they are moving through; therefore, they diffuse more slowly.
  • Temperature: Higher temperatures increase the energy and, therefore, the movement of the molecules, increasing the rate of diffusion.
  • Solvent density: As the density of the solvent increases, the rate of diffusion decreases. The molecules slow down because they have a more difficult time getting through the denser medium.

This text is adapted from Openstax, Concepts of Biology, Section 3.5, Passive Transport.

Tags
DiffusionPassive TransportConcentration GradientHigh ConcentrationLow ConcentrationPotential EnergyCytosolPlasma MembraneRate Of DiffusionEquilibriumSolvent DensityMolecular MassTemperature Effects

Du chapitre 6:

article

Now Playing

6.7 : Diffusion

Cell Membrane Structure and Functions

3.7K Vues

article

6.1 : Que sont les membranes ?

Cell Membrane Structure and Functions

3.7K Vues

article

6.2 : Protéines membranaires

Cell Membrane Structure and Functions

2.4K Vues

article

6.3 : Lipides membranaires

Cell Membrane Structure and Functions

13.3K Vues

article

6.4 : Glucides membranaires

Cell Membrane Structure and Functions

1.8K Vues

article

6.5 : Le glycocalyx et ses fonctions

Cell Membrane Structure and Functions

3.3K Vues

article

6.6 : L’importance du transport membranaire

Cell Membrane Structure and Functions

3.1K Vues

article

6.8 : Transport facilité

Cell Membrane Structure and Functions

2.1K Vues

article

6.9 : Canaux ioniques non dépendants

Cell Membrane Structure and Functions

2.4K Vues

article

6.10 : Osmose

Cell Membrane Structure and Functions

4.7K Vues

article

6.11 : Tonicité chez les animaux

Cell Membrane Structure and Functions

2.8K Vues

article

6.12 : Transport actif primaire

Cell Membrane Structure and Functions

2.4K Vues

article

6.13 : Transport actif secondaire

Cell Membrane Structure and Functions

2.0K Vues

article

6.14 : Introduction au trafic membranaire

Cell Membrane Structure and Functions

1.4K Vues

article

6.15 : Endocytose médiée par le récepteur

Cell Membrane Structure and Functions

2.6K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.