S'identifier

Electric fields generated by static charges, often referred to as electrostatic fields, are characteristically different from electric fields created by time-varying magnetic fields. While the former is a conservative field, implying that no net work is done on a test charge if it goes around in a complete loop in the field, the latter is, by definition, not a conservative field; net work is done, and it is proportional to the rate of change of magnetic flux.

However, the observation of Gauss's law for electrostatic fields breaks down for fields generated by changing magnetic fields, because these always form closed loops. Thus, there is no net flux through a closed surface, as the number of field lines entering and leaving is the same.

Despite their differences, experiments reveal that they exert the same kind of force, the Lorentz force, on test charges. Moreover, these forces follow the principle of superposition. Consequently, the fields also follow the principle of superposition. Hence, they are vectorially added and simply called electric fields.

The distinction between conservative (electrostatic) and non-conservative electric fields is important only in specific cases, for example, inside an ideal inductor.

Nature fascinates us through its simplicity because it was not necessary for the fields produced by different mechanisms to exert the same kind of Lorentz force and add up vectorially. The same simplicity also applies to magnetic fields.

Steady currents produce magnetic fields that obey Ampère's law. However, changing electric fields also produce magnetic fields, in that the field exerts the same Lorentz force on a moving test charge and adds up vectorially with the field produced by steady currents. This observation justifies calling them both magnetic fields.

Tags
Electromagnetic FieldsElectric FieldsElectrostatic FieldsTime varying Magnetic FieldsConservative FieldNon conservative FieldNet WorkMagnetic FluxGauss s LawLorentz ForcePrinciple Of SuperpositionVector AdditionSteady CurrentsAmp re s Law

Du chapitre 30:

article

Now Playing

30.11 : Electromagnetic Fields

Electromagnetic Induction

2.0K Vues

article

30.1 : Induction

Electromagnetic Induction

3.7K Vues

article

30.2 : Loi de Faraday

Electromagnetic Induction

3.7K Vues

article

30.3 : Loi de Lenz

Electromagnetic Induction

3.3K Vues

article

30.4 : F.Emf mobile

Electromagnetic Induction

3.0K Vues

article

30.5 : Dynamo de disque Faraday

Electromagnetic Induction

1.9K Vues

article

30.6 : Champs électriques induits

Electromagnetic Induction

3.4K Vues

article

30.7 : Champs électriques induits : applications

Electromagnetic Induction

1.4K Vues

article

30.8 : Courants de Foucault

Electromagnetic Induction

1.4K Vues

article

30.9 : Courant de déplacement

Electromagnetic Induction

2.7K Vues

article

30.10 : Importance du courant de déplacement

Electromagnetic Induction

4.2K Vues

article

30.12 : Équation de Maxwell de l’électromagnétisme

Electromagnetic Induction

2.9K Vues

article

30.13 : Symétrie dans les équations de Maxwell

Electromagnetic Induction

3.1K Vues

article

30.14 : Loi d’Ampère-Maxwell : résolution de problèmes

Electromagnetic Induction

434 Vues

article

30.15 : Forme différentielle des équations de Maxwell

Electromagnetic Induction

338 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.