S'identifier

Magnetic dipoles in magnetic materials are aligned when placed under an external magnetic field. For paramagnets and ferromagnets, dipole alignment occurs in the direction of the magnetic field. However, the dipoles align opposite to the field in the case of diamagnets. This state of magnetic polarization due to the external field is called magnetization. Magnetization is defined as the dipole moment per unit volume. It plays a similar role to polarization in electrostatics.

The vector potential due to a single magnetic dipole at a field point is given by,

Equation1

The vector potential can be rewritten in terms of magnetization for a magnetized material with aligned dipole moments.

Equation2

The equation becomes simplified using vector analysis.

Equation3

The first term in the above expression is the potential due to the volume current, while the second term is the potential due to the surface current.

Now, the volume current is defined as the curl of the magnetization vector. The surface current is defined as the cross product of the magnetization vector and the unit vector along the area vector. By substituting the expressions for the volume and surface currents, the potential expression reduces to,

Equation4

This expression bears an analogy with an electrostatic case, where the field of a polarized object constitutes the field due to bound volume and surface charges.

If the applied magnetic field is uniform, the volume currents become zero, and only the surface current at the boundary of the material exists. When the field applied is non-uniform, the volume currents persist.

Like any steady current, the bound volume current obeys the conservation law. The bound volume current divergence is zero since the divergence of a curl is zero.

Tags
Magnetic DipolesMagnetic MaterialsExternal Magnetic FieldParamagnetsFerromagnetsDiamagnetsMagnetizationDipole MomentPolarizationVector PotentialVolume CurrentSurface CurrentMagnetization VectorCurl Of MagnetizationElectrostatics AnalogyBound CurrentsConservation LawDivergence Of A Curl

Du chapitre 29:

article

Now Playing

29.15 : Potential Due to a Magnetized Object

Sources of Magnetic Fields

225 Vues

article

29.1 : Champ magnétique dû à des charges mobiles

Sources of Magnetic Fields

8.0K Vues

article

29.2 : Loi Biot-Savart

Sources of Magnetic Fields

5.5K Vues

article

29.3 : Loi Biot-Savart : résolution de problèmes

Sources of Magnetic Fields

2.2K Vues

article

29.4 : Champ magnétique dû à un fil droit mince

Sources of Magnetic Fields

4.5K Vues

article

29.5 : Champ magnétique dû à deux fils droits

Sources of Magnetic Fields

2.2K Vues

article

29.6 : Force magnétique entre deux courants parallèles

Sources of Magnetic Fields

3.3K Vues

article

29.7 : Champ magnétique d’une boucle de courant

Sources of Magnetic Fields

4.1K Vues

article

29.8 : Divergence et courbure du champ magnétique

Sources of Magnetic Fields

2.6K Vues

article

29.9 : Loi d’Ampère

Sources of Magnetic Fields

3.5K Vues

article

29.10 : Loi d’Ampère : résolution de problèmes

Sources of Magnetic Fields

3.4K Vues

article

29.11 : Solénoïdes

Sources of Magnetic Fields

2.4K Vues

article

29.12 : Champ magnétique d’un solénoïde

Sources of Magnetic Fields

3.5K Vues

article

29.13 : Tores

Sources of Magnetic Fields

2.7K Vues

article

29.14 : Potentiel vectoriel magnétique

Sources of Magnetic Fields

443 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.