S'identifier

Eddy currents can produce significant drag on motion, called magnetic damping. For instance, when a metallic pendulum bob swings between the poles of a strong magnet, significant drag acts on the bob as it enters and leaves the field, quickly damping the motion.

If, however, the bob is a slotted metal plate, the magnet produces a much smaller effect. When a slotted metal plate enters the field, an emf is induced by the change in flux; however, it is less effective because the slots limit the size of the current loops. Moreover, adjacent loops have currents in opposite directions, and their effects cancel. When an insulating material is used, the eddy current is extremely small, so magnetic damping on insulators is negligible. If eddy currents are to be avoided in conductors, they must be slotted or constructed of thin layers of conducting material separated by insulating sheets.

Magnetic damping is used in sensitive laboratory balances. To have maximum sensitivity and accuracy, the balance must be as friction-free as possible. If it is friction-free, it oscillates for a very long time. Magnetic damping is a simple and ideal solution. With magnetic damping, the drag is proportional to the speed and becomes zero at zero velocity. Thus, the oscillations are quickly damped, after which the damping force disappears, allowing the balance to be very sensitive. In most balances, magnetic damping is accomplished with a conducting disc that rotates in a fixed field.

Tags
Magnetic DampingEddy CurrentsDrag On MotionMetallic PendulumSlotted Metal PlateEmf InductionChange In FluxCurrent LoopsInsulating MaterialsLaboratory BalancesFriction free OscillationSensitivity And AccuracyDamping Force

Du chapitre 30:

article

Now Playing

30.19 : Magnetic Damping

Electromagnetic Induction

356 Vues

article

30.1 : Induction

Electromagnetic Induction

3.7K Vues

article

30.2 : Loi de Faraday

Electromagnetic Induction

3.7K Vues

article

30.3 : Loi de Lenz

Electromagnetic Induction

3.3K Vues

article

30.4 : F.Emf mobile

Electromagnetic Induction

3.0K Vues

article

30.5 : Dynamo de disque Faraday

Electromagnetic Induction

1.9K Vues

article

30.6 : Champs électriques induits

Electromagnetic Induction

3.4K Vues

article

30.7 : Champs électriques induits : applications

Electromagnetic Induction

1.4K Vues

article

30.8 : Courants de Foucault

Electromagnetic Induction

1.4K Vues

article

30.9 : Courant de déplacement

Electromagnetic Induction

2.7K Vues

article

30.10 : Importance du courant de déplacement

Electromagnetic Induction

4.2K Vues

article

30.11 : Champs électromagnétiques

Electromagnetic Induction

2.0K Vues

article

30.12 : Équation de Maxwell de l’électromagnétisme

Electromagnetic Induction

2.9K Vues

article

30.13 : Symétrie dans les équations de Maxwell

Electromagnetic Induction

3.1K Vues

article

30.14 : Loi d’Ampère-Maxwell : résolution de problèmes

Electromagnetic Induction

438 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.