S'identifier

Direction cosines, which help describe the orientation of a vector with respect to the coordinate axes, are an essential concept in the field of vector calculus. Consider vector A that is expressed in terms of the Cartesian vector form using i, j, and k unit vectors. The magnitude of vector A is defined as the square root of the sum of the squares of its components. The direction of this vector with respect to the x, y, and z axes is defined by the coordinate direction angles α, β, and γ, respectively. These angles can be determined by projecting vector A onto the respective axes, known as the direction cosines of vector A.

Equation 1

Equation 1

Equation 1

A significant relationship can be formulated by squaring the equation that defines the direction cosines of A. This relationship is given by the sum of the squares of the direction cosines, which equals one.

Equation 1

Using this equation, if only two of the coordinate angles are known, the third angle can be found. Direction cosines help describe the orientation of a vector based on its components in space, making them an important concept in a wide range of fields, including physics, engineering, and computer graphics. By understanding the direction cosines of a vector, one can easily determine its orientation and displacement, which, thus, enables the development of accurate models and simulations.

Tags
Direction CosinesVector OrientationVector CalculusCartesian VectorUnit VectorsMagnitude Of VectorCoordinate Direction AnglesProjectionRelationship Of Direction CosinesPhysicsEngineeringComputer GraphicsAccurate ModelsSimulations

Du chapitre 2:

article

Now Playing

2.10 : Direction Cosines of a Vector

Force Vectors

374 Vues

article

2.1 : Scalaire et vecteurs

Force Vectors

1.1K Vues

article

2.2 : Opérations vectorielles

Force Vectors

1.1K Vues

article

2.3 : Introduction à la force

Force Vectors

423 Vues

article

2.4 : Force Classification

Force Vectors

1.0K Vues

article

2.5 : Addition vectorielle des forces

Force Vectors

538 Vues

article

2.6 : Système de force bidimensionnel

Force Vectors

804 Vues

article

2.7 : Système de force bidimensionnel : résolution de problèmes

Force Vectors

495 Vues

article

2.8 : Notation scalaire

Force Vectors

602 Vues

article

2.9 : Notation vectorielle cartésienne

Force Vectors

660 Vues

article

2.11 : Système de force tridimensionnel

Force Vectors

1.9K Vues

article

2.12 : Système de force tridimensionnelle : résolution de problèmes

Force Vectors

567 Vues

article

2.13 : Vecteurs de position

Force Vectors

669 Vues

article

2.14 : Vecteur de force le long d’une droite

Force Vectors

426 Vues

article

2.15 : Produit scalaire

Force Vectors

248 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.