S'identifier

In structural engineering, the analysis of beams subjected to varying loads is a critical aspect of understanding the behavior and performance of these structural elements. A common scenario involves a beam subjected to a combination of different load distributions.

Consider a beam of length L subjected to a varying load, which is a combination of parabolic and trapezoidal load distribution along the x-axis. In this case, it is essential to determine the resultant loads, their locations, and the centroid of the combined area to predict the beam's response under these loading conditions.

Firstly, examine the parabolic load distribution. Consider a differential element of force dR acting over a small length dx. To determine the resultant load for the parabolic area, the differential element dR is integrated over the entire length of the load. The location of this resultant load is at the centroid of the parabolic area. The moment principle is applied to find the x-coordinate of the centroid, which states that the first moment of the area about an axis is equal to the product of the area and the distance of its centroid from the axis.

Next, the trapezoidal load distribution is analyzed by dividing it into two rectangular and triangular regions. The resultant loads for these individual regions act at their respective centroids. For the rectangular area, the centroid is positioned at half the length of the rectangle. For the triangular area, the centroid is located one-third of the base length away from the vertical side of the triangle.

By adding the individual resultant loads for the rectangular and triangular areas, the resultant load for the entire trapezoidal area can be determined. The location of the resultant load passes through the centroid of the trapezoidal area, which can also be determined using the moment principle.

Similarly, by adding the resultant loads of both the parabolic and trapezoidal areas, the total resultant load acting on the beam can be determined. The location of the total resultant load passes through the centroid of the combined area, which can be further determined using the moment principle.

Tags

Structural EngineeringBeam AnalysisVarying LoadsLoad DistributionParabolic LoadTrapezoidal LoadResultant LoadCentroidMoment PrincipleRectangular RegionTriangular RegionDifferential ElementLoading Conditions

Du chapitre 4:

article

Now Playing

4.19 : Load along a Single Axis

Force System Resultants

254 Vues

article

4.1 : Moment d’une force : formulation scalaire

Force System Resultants

630 Vues

article

4.2 : Moment d’une force : la résolution de problèmes

Force System Resultants

513 Vues

article

4.3 : Moment résultant : formulation scalaire

Force System Resultants

1.3K Vues

article

4.4 : Moment d’une force : formulation vectorielle

Force System Resultants

2.3K Vues

article

4.5 : Forme cartésienne pour la formulation vectorielle

Force System Resultants

534 Vues

article

4.6 : Moment résultant : formulation vectorielle

Force System Resultants

2.9K Vues

article

4.7 : Principe des moments

Force System Resultants

1.5K Vues

article

4.8 : Principe des moments : résolution de problèmes

Force System Resultants

747 Vues

article

4.9 : Moment d’une force autour d’un axe : scalaire

Force System Resultants

282 Vues

article

4.10 : Moment d’une force autour d’un axe : vecteur

Force System Resultants

289 Vues

article

4.11 : Couple

Force System Resultants

366 Vues

article

4.12 : Couples : formulation scalaire et vectorielle

Force System Resultants

207 Vues

article

4.13 : Couples équivalents

Force System Resultants

243 Vues

article

4.14 : Moment de couple : résolution de problèmes

Force System Resultants

796 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.