S'identifier

When analyzing a beam subjected to various loads, it is crucial to understand the internal forces and moments generated within the structure. These internal forces can be broadly classified into normal forces, shear forces, and bending moments. To determine these forces and moments, we use the method of sections and apply a specific sign convention based on their direction and the side of the section being analyzed.

The normal force acts perpendicular to the beam's cross-section and can cause tension or compression within the object. When the normal force creates tension, it is assumed to be positive, whereas when it generates compression, it is considered negative.

Shear force refers to the forces acting tangentially to the cross-section of the beam. These forces typically occur in pairs, with one force acting on the left side of the section and the other on the right side. If the force on the left side is directed downward and the force on the right side is directed upward, the shear force is considered positive, resulting in a clockwise rotation. Conversely, if the direction of the forces on each side is reversed, a negative shear force is produced, leading to a counterclockwise rotation.

The bending moment is the rotational effect caused by an external force acting on the beam. When subjected to such a force, the beam experiences a curvature, which can either be upward (concave) or downward (convex). The sign convention for bending moments dictates that a positive bending moment corresponds to an upward (concave) curvature, while a negative bending moment corresponds to a downward (convex) curvature. This convention plays a vital role in understanding the deformation pattern of the beam and designing appropriate structural elements to resist bending.

In summary, the sign conventions for normal force, shear force, and bending moment are essential tools in structural analysis. They help engineers and designers understand the behavior of structures under various loads, predict potential failure modes, and design robust and efficient structural elements.

Tags
Sign ConventionInternal ForcesMomentsNormal ForcesShear ForcesBending MomentsTensionCompressionClockwise RotationCounterclockwise RotationCurvatureStructural AnalysisDeformation PatternStructural Design

Du chapitre 7:

article

Now Playing

7.1 : Sign Convention

Internal Forces

1.7K Vues

article

7.2 : Force normale et force de cisaillement

Internal Forces

1.9K Vues

article

7.3 : Moments de flexion et de torsion

Internal Forces

3.2K Vues

article

7.4 : Chargements internes dans les éléments structurels : résolution de problèmes

Internal Forces

1.2K Vues

article

7.5 : Poutres

Internal Forces

1.2K Vues

article

7.6 : Diagramme de cisaillement

Internal Forces

643 Vues

article

7.7 : Diagramme du moment de flexion

Internal Forces

845 Vues

article

7.8 : Relation entre la charge répartie et le cisaillement

Internal Forces

533 Vues

article

7.9 : Relation entre le moment de cisaillement et le moment de flexion

Internal Forces

854 Vues

article

7.10 : Diagramme des moments de cisaillement et de flexion : résolution de problèmes

Internal Forces

1.1K Vues

article

7.11 : Câble soumis à des charges concentrées

Internal Forces

722 Vues

article

7.12 : Câble soumis à une charge répartie

Internal Forces

569 Vues

article

7.13 : Câble soumis à son propre poids

Internal Forces

359 Vues

article

7.14 : Câble : résolution de problèmes

Internal Forces

286 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.