JoVE Logo

S'identifier

7.8 : Relation Between the Distributed Load and Shear

Understanding the relationship between the distributed load and shear force in structural analysis is crucial for analyzing beams subjected to various loading conditions. Consider the case of a beam experiencing a distributed load, two concentrated loads, and a couple moment.

Static equilibrium diagram with forces F1, F2; equations ΔF=w(x)Δx, Δk=k(Δx); spring load setup.

The connection between the shear force and the distributed load for the given case can be established following the given procedure. First, consider an elemental section on the beam free from any concentrated load or couple moment. We can draw a free-body diagram to analyze the forces acting on this section. The diagram will consist of the distributed load acting along the length of the beam, the shear force V(x) acting on the right-hand side of the section, and an incremental shear force dV added to maintain the equilibrium.

To maintain equilibrium in the vertical direction, the shear force acting on the right-hand side of the section should be incremented by a small and finite amount, ΔV. The resultant force of the distributed load, w(xx, acts at a fractional distance from the right end of the section.

Using the equation of equilibrium for vertical force, the following relation between shear and load can be obtained:

Change in potential energy formula, ΔV=-w(x)Δx, static equilibrium, concept diagram.

Next, we will divide both sides of the equation by Δx and let Δx approach zero:

Static equilibrium equation \( \frac{dV}{dx} = -w(x) \), formula for load distribution analysis.

This equation shows that the slope of the shear force is equal to the distributed load intensity.

Finally, we can rearrange the equation and integrate the distributed load over the elemental section between two arbitrary points, Q and R:

Static equilibrium equation: VR-VQ=-∫w(x)dx, integral formula for physics, mathematics.

This integral equation demonstrates the relationship between the change in shear force and the area under the load curve. The difference in shear force between points Q and R equals the area under the distributed load curve between these two points.

Tags

Distributed LoadShear ForceStructural AnalysisBeam Loading ConditionsFree body DiagramEquilibriumIncremental Shear ForceVertical Force EquilibriumShear Force SlopeLoad IntensityIntegral EquationLoad Curve Area

Du chapitre 7:

article

Now Playing

7.8 : Relation Between the Distributed Load and Shear

Internal Forces

601 Vues

article

7.1 : Convention de signature

Internal Forces

1.9K Vues

article

7.2 : Force normale et force de cisaillement

Internal Forces

2.0K Vues

article

7.3 : Moments de flexion et de torsion

Internal Forces

3.5K Vues

article

7.4 : Chargements internes dans les éléments structurels : résolution de problèmes

Internal Forces

1.2K Vues

article

7.5 : Poutres

Internal Forces

1.3K Vues

article

7.6 : Diagramme de cisaillement

Internal Forces

737 Vues

article

7.7 : Diagramme du moment de flexion

Internal Forces

980 Vues

article

7.9 : Relation entre le moment de cisaillement et le moment de flexion

Internal Forces

969 Vues

article

7.10 : Diagramme des moments de cisaillement et de flexion : résolution de problèmes

Internal Forces

1.3K Vues

article

7.11 : Câble soumis à des charges concentrées

Internal Forces

792 Vues

article

7.12 : Câble soumis à une charge répartie

Internal Forces

631 Vues

article

7.13 : Câble soumis à son propre poids

Internal Forces

422 Vues

article

7.14 : Câble : résolution de problèmes

Internal Forces

312 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.