The two theorems developed by Pappus and Guldinus are widely used in mathematics, engineering, and physics to find the surface area and volume of any body of revolution. This is done by revolving a plane curve around an axis that does not intersect the curve to find its surface area or revolving a plane area around a non-intersecting axis to calculate its volume.

For finding the surface area, consider a differential line element that generates a ring with surface area dA when revolved. Integrating this differential area determines the surface area of the revolution, which is described by the first theorem. The first theorem states that the surface area of revolution is equal to the product of the length of the generating curve and the distance traveled by its centroid during the generation of the surface area.

Similarly, for calculating the volume of revolution, consider a differential area element generating a ring with differential volume when revolved. Integrating this differential volume determines the volume of revolution, as per the second theorem. The second theorem of Pappus and Guldinus states that the volume of revolution is equal to the product of the generating area and the distance traveled by its centroid in generating such volume. Understandably, if either curve or area is revolved through an angle instead of a complete 360° rotation, their respective formulae would need to be altered accordingly.

Tags
Pappus TheoremGuldinus TheoremSurface AreaVolume Of RevolutionPlane CurveDifferential Line ElementCentroidIntegrationGenerating CurveGenerating AreaNon intersecting AxisMathematical ApplicationsEngineering ApplicationsPhysics Applications

Du chapitre 9:

article

Now Playing

9.7 : Theorems of Pappus and Guldinus

Center of Gravity and Centroid

1.6K Vues

article

9.1 : Centre de gravité

Center of Gravity and Centroid

1.3K Vues

article

9.2 : Centre de masse

Center of Gravity and Centroid

1.0K Vues

article

9.3 : Centroïde d’un corps

Center of Gravity and Centroid

720 Vues

article

9.4 : Centroïde d’un corps : résolution de problèmes

Center of Gravity and Centroid

982 Vues

article

9.5 : Centroïde pour le paraboloïde de la révolution

Center of Gravity and Centroid

438 Vues

article

9.6 : Carrosseries composites

Center of Gravity and Centroid

990 Vues

article

9.8 : Théorèmes de Pappus et Guldinus : résolution de problèmes

Center of Gravity and Centroid

586 Vues

article

9.9 : Résultante d’une charge distribuée générale

Center of Gravity and Centroid

581 Vues

article

9.10 : Pression du fluide

Center of Gravity and Centroid

488 Vues

article

9.11 : Pression du fluide sur une plaque plate de largeur constante

Center of Gravity and Centroid

1.2K Vues

article

9.12 : Pression du fluide sur une plaque incurvée de largeur constante

Center of Gravity and Centroid

871 Vues

article

9.13 : Pression du fluide sur une plaque plate de largeur variable

Center of Gravity and Centroid

976 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.