In argentometric precipitation titrations, endpoints can be detected visually by the Mohr, Volhard, and Fajans methods. In the Mohr method, adding a soluble chromate indicator gives an initial yellow color to the analyte solution. As the titrant is added, the first excess of silver ions forms a red silver chromate precipitate, marking the endpoint. The solution pH should be maintained at about 8 by adding solid CaCO3.

In the Volhard method, a standard excess of AgNO3 is first added to the chloride ions to precipitate AgCl, which is removed by filtration. Now, the filtrate containing excess Ag+ is back-titrated against thiocyanate in the presence of a ferric ion indicator. A soluble red complex is formed, signaling the endpoint of the titration. The titration must be performed in an acidic medium.

Fajans method employs an anionic adsorption indicator that exhibits different colors when it is in solution and when it is adsorbed. Before the equivalence point, when the chloride ions are in excess, they form the primary adsorbed layer on the AgCl precipitate. The negatively charged precipitate surface repels the anionic indicator, which remains in solution. However, beyond the equivalence point, silver ions are in excess, forming the primary adsorbed layer on the precipitate. The positively charged precipitate surface now attracts the anionic indicator, which is adsorbed. This results in a color change, indicating the endpoint. In this method, the pH of the solution is adjusted based on the indicator used.

Tags
Precipitation TitrationEndpoint DetectionArgentometric TitrationMohr MethodVolhard MethodFajans MethodChromate IndicatorAgCl PrecipitateBack titrationFerric Ion IndicatorAnionic Adsorption IndicatorColor ChangeSolution PH Adjustment

Du chapitre 5:

article

Now Playing

5.14 : Precipitation Titration: Endpoint Detection Methods

Complexometric Titration, Precipitation Titration, and Gravimetry

1.1K Vues

article

5.1 : Titrage complexométrique : Vue d’ensemble

Complexometric Titration, Precipitation Titration, and Gravimetry

3.9K Vues

article

5.2 : Titrage complexométrique : ligands

Complexometric Titration, Precipitation Titration, and Gravimetry

726 Vues

article

5.3 : Propriétés des composés organométalliques

Complexometric Titration, Precipitation Titration, and Gravimetry

697 Vues

article

5.4 : EDTA : Chimie et propriétés

Complexometric Titration, Precipitation Titration, and Gravimetry

1.4K Vues

article

5.5 : EDTA : Constante de Formation Conditionnelle

Complexometric Titration, Precipitation Titration, and Gravimetry

521 Vues

article

5.6 : EDTA : réactifs complexants auxiliaires

Complexometric Titration, Precipitation Titration, and Gravimetry

434 Vues

article

5.7 : EDTA : titrage direct, arrière et déplacement

Complexometric Titration, Precipitation Titration, and Gravimetry

1.6K Vues

article

5.8 : EDTA : titrage indirect et alcalinmétrique

Complexometric Titration, Precipitation Titration, and Gravimetry

531 Vues

article

5.9 : Courbes de titrage EDTA complexométriques

Complexometric Titration, Precipitation Titration, and Gravimetry

613 Vues

article

5.10 : Effets de l’EDTA sur les méthodes de détection des points finaux

Complexometric Titration, Precipitation Titration, and Gravimetry

182 Vues

article

5.11 : Masquage et démasquage des agents

Complexometric Titration, Precipitation Titration, and Gravimetry

1.8K Vues

article

5.12 : Titrage des précipitations : Vue d’ensemble

Complexometric Titration, Precipitation Titration, and Gravimetry

3.5K Vues

article

5.13 : Courbe de titrage des précipitations : analyse

Complexometric Titration, Precipitation Titration, and Gravimetry

769 Vues

article

5.15 : Gravimétrie : Vue d’ensemble

Complexometric Titration, Precipitation Titration, and Gravimetry

3.2K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.